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Aims of comparing our results …

I. Debugging:
Are the governing equation correctly approximated and solved? 
Do the results converge towards the analytic solution? 
Does the order of convergence meet the formal order? 
Results can be compared with analytic solutions or to more exact
numerical solutions.   

II. Validation:
Are the model equations correct?
Are the boundary conditions appropriate?
Results must be compared with measured data.

III. Calibration:
Tuning of some important model parameter on the basis of 
measured data.
The calibrated model is hoped to be able to predict tendencies, 
therefore it is useful in engineering optimization or for exploring 
the dynamics of the process.

Errors and uncertainties

• Error:
The reason is known. It comes from intentional 
approximations. Can be reduced by increased 
computational effort or with more elaborated 
numerical methods.

• Uncertainties:
Its magnitude cannot be estimated, because the 
reason is not described in mathematical terms.
Cannot be reduced by increased computational 
effort.

Exact ↔ Approximate

1. Model uncertainties

• Turbulent models.

• Is it really a steady flow?

• Equation of state. 
(Is it an really an ideal gas?)

• Non-newtonian characteristics. 

• Simplification of chemical reactions.

Experimental

observations
↔ Analytical solution of

the governing equations

Because we solve the  wrong equations.

2. Discretization error

• Can be reducer by refinement of the numerical resolution.

• Order of convergence can be predicted on the basis of the 
magnitude of terms omitted from the Taylor series when deriving 
the solution. 

• Ideally, the discretization error of a first order scheme is 
proportional to the numerical resolution and it is proportional to the 
square of the numerical resolution for second order schemes. 

• It can come from spatial and from temporal discretization.

• Sometimes - depending on mesh quality, on cell Reynolds number 
(when upwinding is used) and on boundary layer mesh - the 
numerical solution does not meet the formal order of convergence.

• Order of convergence need to be measured by systematic mesh 
refinement.

Exact solution of the

discretized equations↔
Analytical solution of

the governing equations

Error estimation and extrapolation to the 

grid-independent solution
• The refinement need to be substantial, e.g. interval halving: number of cells are 

increased by a factor of 8. The necessary  minimum increase in linear resolution is 
about 1.5, which leads to a factor of 3.4 increase in the number of cells.

• At least consecutive refinements are necessary (Φ4h is already “fine enough”): 
Course mesh: Φ4h, 
Practical mesh: Φ2h, 
Fine mesh: Φh.

• Refinement must be uniform, and the grid quality (skewnes, aspect ratio…) must be 
preserved. 

• Attention! Low of the wall can be violated due to the refinement, which is another 
important source of modeling error. 
Grid independent solution can be estimated by using Richardson extrapolation:

• Φ can be an integral property or field variable, in the later case we can monitor the 
error distribution as well.

• E.g. the error of a first order scheme on the finer mesh can be estimated by the 
difference between the solutions obtained on the fine and coarse grids if linear 
interval halving (r=2) is used. 
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3. Iteration error

• Does it converge at all? If not:
1. is it a grid problem;
2. contradicting boundary conditions;
3. the applied turbulent model does not stabilize the solution > try running it in 
unsteady mode (URANS).

• Monitor the residuals! Iteration error is proportional to the residuals (excepting 
for the very beginning of the iteration process.) The initial error is limited too, 
therefore a factor of 10-3 reduction in the error usually acceptable from practical 
point of view. 

• When the solution seems to be converged the underrelaxation factors can be 
increased for checking convergence. 

• We can start the iteration from another initial state. 

• There are some slowly converging properties e.g. wall friction and drag force. 
We can monitor the convergence of these properties too. 

• Iteration error cannot be reduced below the truncation error:

Partially converged 

solution↔
Converged 

solution

Stop the iteration at this point

4. Truncation error 

• Default precision in FLUENT is 4 bytes (some 7 

digits), and we can use double precision too.

• Some flows are known to be sensitive for precision of 

storage:

- low Re turbulent models;

- natural convection with small temperature difference;

- radiation heat transfer;

- mixture model with low concentrations;

- massive hydrostatic (equilibrium) pressure gradients.

Solution with finitely 

precise numbers↔
Solution with infinitely 

precise numbers

5. Application uncertainties

Because we are working with the wrong data.

- Geometrical uncertainties;
- Uncertainties of boundary conditions;
- Uncertainties of material properties.

Geometrical uncertainties

• The real geometry differs from the original design. (production 
aspect e.g. manufacturing were taken into account);

• Even little details can have great fluid mechanical significance:
- tip clearance in axial fans;
- wall roughness caused by welding.

• When the geometry has a fine geometrical structure porous zone 
models are often used. Parameterization of such zones can have an 
impact on the solution. > Flow micro structure can be analyzed via 
micro-modeling. 

• Geometry can be deformed under working conditions due to 
mechanical load (e.g. tent roofs). Fluid-structure interaction is one 
of the cutting edge modeling issues. 
FLUENT – ABACUS / CFX – ANSYS

Uncertainties of boundary conditions

• In most cases only the flow rate is known, but the simulation requires profiles 
for magnitude and direction.

• Inlet profiles for turbulent quantities are usually not known. ε cannot be 
measured either. 

• We can carry out sensitivity studies by perturbing the boundary conditions. 

• The increase in geometrical extent of the domain reduces boundary 
dependence of the most important part of the flow. Dependence on upstream 
BC is larger than dose of downstream BC. (E.g. a box should be added from 
outside to the building when modeling natural convection through a door.)

• Atmospheric flow calculations are very sensitive for the inlet profiles for 
turbulent quantities. ε profiles being far from the equilibrium can cause an 
abrupt change in the velocity profile. (We can run e.g. a 2D pre-calculation for 
the inlet profiles.)

• Large Eddy Simulation is very sensitive for boundary conditions. Realistic 
(turbulent like) fluctuation must be added to the time averaged inlet velocity 
profile. 

Uncertainties in fluid properties

Only two examples: 

• Atmospheric pressure and temperature:

p: 900 – 1050 kPa → 15 %

T: 253 – 313 K → 22 %

• Kinematical viscosity of water between 100 and 

20 °C:

0.25 * 10-6 … 1 * 10-6 m2/s → 400 %
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Summary

1. Model uncertainties

2. Discretization error

3. Iteration error

4. Truncation error

5. Application uncertainties
- Geometry

- Boundary conditions

- Fluid properties

6. User errors

7. Software errors


