VON KÁRMÁN INSTITUTE FOR FLUID DYNAMICS Environmental and Applied Fluid Dynamics Department

Final Public Presentation on 26th/06/2000

Experimental Investigation on Turbulence Modification by Particles in Shear Layer Flow Using L-6 Twin-Jet Wind Tunnel

Jenö Miklós SUDA VKI-DC 1999/2000

supervisor: Prof. J-M. BUCHLIN advisor: L. ZIMMER

von Kármán Institute for Fluid Dynamics -----

Contents

- **#** Introduction, Background, Objectives
- **#** Upgrade of the Experimental Apparatus /L-6 wind tunnel + spray/
- **#** Various Applied Measurement Techniques
 - ☐ for single-phase flow /Prandtl tube, Heated Sphere Probe, PIV, PTVS/
 - ☐ for two-phase flow

particulate phase /PDA/ carrier gas phase /PTVS/

Typical Results

- ☑ Flow Visualization
- ☑ Single-phase and two-phase flow measurements
- **#** Physical Modeling of Turbulence Modification
 - Particle turbulence modulation map, "rough guide" of [Elghobashi, 1994]
 Map of T.I. change as function of length scale ratio, from [Gore & Crowe, 1989]
 Graph of streamwise evolution of particle Stokes number
- **#** Future Recommendations
- **#** Conclusions

Introduction

- **#** Industrial importance of two-phase flows /polydispersed particulate phase/
- **#** Weak point is the modeling of particle turbulence interaction
- # Lack of physical models, lack of experimental data
- **%** "New" measurement techniques to obtain detailed information on both phases in particle laden flows

Background at VKI

Design of L-6 wind tunnel for mixing layer study by [Borrego, 1981]

- **#** Particle Tracking Velocimetry and Sizing /PTVS/ by [Zimmer, 1998]
- **#** Direct Numerical Simulation /DNS/ by P. Rambaud

Set-Up an Experimental Apparatus for Two-Phase Flow

- **#** Perform Measurements in Single-Phase and Two-Phase Flow to characterize the flow field of the particulate phase and the carrier phase
- **#** Extract the Information about the Carrier Gas Flow Turbulence Field
- **#** Qualify the T.I. Modification by the Analysis of the Results
- **#** Contribute to Physical Modeling of Turbulence Modification by Particles

Vertical Arrangement Downward Twin-Jet Flow

L-6 Wind Tunnel

L-6 wind tunnel

Environmental and Applied Fluid Dynamics Department Final Public Presentation on 26th/06/2000

upgrade and supplementation with spray facility and smoke injection & suction units

Velocity Profile Measurements with Heated Sphere Probe

Single Phase Flow

/ $U_1=2m/s$, $U_2=1m/s$, $\lambda=0.33$, Tetsoterm control measurements Test4 / Non-dimensional Plot 3 Streamwise Velocity, Ug [m/s] ∆U/∆U₀ [-] Streamwise direction, Streamwise direction, x 1mm Velocity Ratio $r = U_2/U_1$ **♦** 100mm ◆ 200mm ◆ 300mm Mixing Layer Ŷ → 100mm 2.5 ♦ 400mm ♦ 500mm <u>→</u>200mm →-400mm 2 [present] 500mm $\Delta U / \Delta U_{0}$ 1.5 1.00 YULE [76] = 2.0 = 3.0 = 4.0 0.75 1 WYGNANSKY and FIEDLER [14] 0.50 0.5 0.25 [Borrego, 1981] Splitter Plate y 2.00 - 1.00 -0.50 0.50 1.00 0 1.50 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 60 70 80 90 100 110 120 130 140 150 50

Velocity Profiles of Single Gas Phase / $U_1=2m/s$, $U_2=1m/s$, $\lambda=0.33$, Tetsoterm control measurements Test4 /

Distance from Splitter Plate, y [mm]

PHASE DOPPLER ANEMOMETRY

Particulate Phase Characterization

- # PDA Emitter: 15mW He-Ne laser
- **#** Positioning System for PDA
- **%** [mm] Positioning Table
- **#** Aerometrics PDPA data acquisition on PC

Data Post-Processing in Excel

Streamwise and Transversal evolution of
 Δ droplet mean velocity, RMS, T.I.
 Δ d_p droplet diameter distribution
 Δ α_p volume ratio of liquid-air in laden flows

Environmental and Applied Fluid Dynamics Department Final Public Presentation on 26th/06/2000

Turbulence Modification

? QUESTION ?

Which Droplet (d_p) is Responsible for Turbulence Attenuation / Augmentation?

	DROPLET	AIR	RATIO
characteristic length scale:	dp	e	d _p ∕l _e
characteristic time scale:	$\tau_p = \rho d^2 / 18 \mu$	$ au_{\rm e}$ =2 I _e / Δ U	Stp

VON KÁRMÁN INSTITUTE FOR FLUID DYNAMICS

Turbulence Modulation Map

Effect of characteristic time scale ratio on turbulence modification: Map for particle-turbulence modulation ("rough guide") Stokes number:

$$St_p = \frac{\tau_p}{\tau_e} = f(\alpha_p)$$

 $\tau_p{=}\rho d_p{}^2$ / 18 μ particle response time

 $\tau_{\rm e}$ =2 I_e / Δ U fluid time scale

 α_p : particulate phase volume ratio

graph from [Elghobashi, 1994]

in [Crowe et al., 1996] in Annu. Rev. Fluid. Mech. Vol.28. pp.11-43.

Physical Modeling

Streamwise Variation of Characteristic Time Scales in the Mixing Layer Flow

U₁=2m/s, U₂=1m/s, r=0.5, λ=0.33

Physical Modeling

Future Recommendations

- **%** 100 instantaneous image are not sufficient enough for clear statistics, but it is still limited by the available computational memory (Gbytes!)
- Importance of both characteristic scale ratios:
 Δ time scales: τ_g fluid, τ_p particle, (St_p Stokes number)
 Δ length scales: d_p, l_g
- **#** Avoid particle collision! (e.g. solid particles)
- Highly recommended to use monodisperse particulate phase for academic studies
- **#** Discrimination of particles based on fluorescence
- **#** Using the proposed particle Stokes number evolution graph
- **#** More precise positioning system and blower regulator is needed

Conclusion

- **#** Upgraded experimental apparatus is available for further two-phase flow study in a mixing layer of twin-stream downward jet flow
- Combination of various non-intrusive measurement techniques (PDA, PIV, PTVS) for Single-Phase and Two-Phase Flow Measurements:
 ☑ three different velocity ratio was examined
 ☑ data processing and comparing results: time consuming!
- **#** Developing Mixing Layer Flow and Polydispersed Particulate Phase Highly Complex turbulence modification phenomena!
- **#** Experimental results confirmed the importance of both characteristic time and length scale ratios
- **#** Contribution to the physical modeling with the proposed particle Stokes number streamwise evolution graph

Thank you for your attention!