

VON KÁRMÁN INSTITUTE FOR FLUID DYNAMICS Environmental and Applied Fluid Dynamics Department

Final Public Presentation on 26th/06/2000

Experimental Investigation on Turbulence Modification by Particles in Shear Layer Flow Using L-6 Twin-Jet Wind Tunnel

Jenö Miklós SUDA VKI-DC 1999/2000

supervisor:Prof. J-M. BUCHLINadvisor:L. ZIMMER

- von Kármán Institute for Fluid Dynamics —

Introduction, Background, Objectives

Upgrade of the Experimental Apparatus /L-6 wind tunnel + spray/

X Various Applied Measurement Techniques

△ for single-phase flow /Prandtl tube, Heated Sphere Probe, PIV, PTVS/ \bigtriangleup for two-phase flow ← particulate phase /PDA/ carrier gas phase /PTVS/

Typical Results

- ☐ Flow Visualization
- ☐ Single-phase and two-phase flow measurements

B Physical Modeling of Turbulence Modification

Particle - turbulence modulation map, "rough guide" of [Elghobashi, 1994] △ Map of T.I. change as function of length scale ratio, from [Gore & Crowe, 1989] Graph of streamwise evolution of particle Stokes number

Future Recommendations

Conclusions

Introduction

- **% Industrial importance** of two-phase flows /polydispersed particulate phase/
- **Weak point** is the modeling of *particle turbulence interaction*
- **% Lack** of *physical models*, **lack** of *experimental data*
- # "New" measurement techniques to obtain detailed information on both phases in particle laden flows

Background at VKI

- **Borrego**, 1981] **Borrego**, 1981]
- **# Particle Tracking Velocimetry and Sizing** /PTVS/ by [Zimmer, 1998]
- **# Direct Numerical Simulation** /DNS/ by P. Rambaud

Set-Up an Experimental Apparatus for Two-Phase Flow

- **# Perform Measurements** in Single-Phase and Two-Phase Flow to *characterize* the flow field of the *particulate phase* and the *carrier phase*
- **# Extract the Information** about the Carrier Gas Flow Turbulence Field
- **Cualify the T.I. Modification** by the Analysis of the Results
- **% Contribute to Physical Modeling** of Turbulence Modification by Particles

Environmental and Applied Fluid Dynamics Department Final Public Presentation on 26th/06/2000

Vertical Arrangement Downward Twin-Jet Flow

L-6 Wind Tunnel

von Kármán Institute for Fluid Dynamics

Environmental and Applied Fluid Dynamics Department Final Public Presentation on 26th/06/2000

upgrade and supplementation with spray facility and smoke injection & suction units

Velocity Profile Measurements with Heated Sphere Probe

Single Phase Flow

PARTICLE IMAGING Measurement Techniques VELOCIMETRY

PHASE DOPPLER ANEMOMETRY

Measurement Techniques

Turbulence Modification

? QUESTION ?

Which Droplet (d_p) is Responsible for Turbulence Attenuation / Augmentation?

	DROPLET	AIR	RATIO
characteristic length scale:	d _p	l _e	d _p ∕l _e
characteristic time scale:	$τ_p = \rho d^2 / 18 \mu$	$\tau_e = 2 I_e / \Delta U$	St _p

VON KÁRMÁN INSTITUTE FOR FLUID DYNAMICS

[Elghobashi, 1994]

Turbulence Modulation Map

Effect of **characteristic time scale ratio** on turbulence modification: Map for particle-turbulence modulation (*"rough guide"*) Stokes number:

$$St_p = \frac{\tau_p}{\tau_e} = f(\alpha_p)$$

 $\tau_p = \rho d_p^2 / 18\mu$ particle response time

 $\tau_e = 2 I_e / \Delta U$ fluid time scale

 α_p : particulate phase volume ratio

graph from [Elghobashi, 1994] in [Crowe et al., 1996] *in Annu. Rev. Fluid. Mech.* Vol.**28**. pp.11-43.

[Gore and Crowe, 1989] Turbulence Modulation Map

Physical Modeling

Streamwise Variation of Characteristic Time Scales in the Mixing Layer Flow

 $U_1=2m/s, U_2=1m/s, r=0.5, \lambda=0.33$

von Kármán Institute for Fluid Dynamics

Physical Modeling

Future Recommendations

- **100 instantaneous image** are **not sufficient enough** for clear statistics, but it is still limited by the available computational **memory** (Gbytes!)
- Importance of both characteristic scale ratios:
 ime scales: τ_g fluid, τ_p particle, (St_p Stokes number)
 Iength scales: d_p, /_g
- **% Avoid** particle **collision**! (e.g. solid particles)
- Highly recommended to use monodisperse particulate phase for academic studies
- **# Discrimination** of particles based on fluorescence
- **#** Using the proposed particle Stokes number evolution graph
- **# More precise** positioning system and blower regulator is needed

Conclusion

- **# Upgraded experimental apparatus is available** for further two-phase flow study in a mixing layer of twin-stream downward jet flow
- Combination of various non-intrusive measurement techniques (PDA, PIV, PTVS) for Single-Phase and Two-Phase Flow Measurements:
 three different velocity ratio was examined
 data processing and comparing results: time consuming!
- **Barrie Developing Mixing Layer** Flow and **Polydispersed Particulate Phase Highly Complex** turbulence modification **phenomena!**
- **Experimental results confirmed** the importance of both characteristic time and length scale ratios
- Contribution to the physical modeling with the proposed particle Stokes number streamwise evolution graph

Thank you for your attention!