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5.1. The general solution of the homogeneous wave equation, harmonic waves, (lecture notes) 
 
The solutions of the homogeneous wave equation are the wave functions (as general solution, particular 
solutions, and there are solutions for free- and bounded spaces). 
 
The general solution of the wave equation (for one-dimensional sound propagation in free space): 

 

𝑝′(𝑥, 𝑡) = 𝑓 (𝑡 −
𝑥

𝑎
) + 𝑔 (𝑡 +

𝑥

𝑎
) 

 
Comments: 

- f and g functions are two times differentiable, arbitrary (optional) functions. 

- The physical consequence of this “mathematic freedom”, that all of the mechanical disturbances will propagate 
as a sound (this explain the diversity of the sound) 

- The other importance of the general solution related to function argument. Let be the sound pressure in t1 time 
and x1 position p’*. Later in t2 time the same point of the wave front (noted with a star) will move to x2 point, see 
figure below. 
 

 
 

A sound pressure distribution moving in positive x direction, in time t1 and t2 
 
At plane waves propagation the sound rays are parallel to each other (there is no divergent rarefaction and 
convergent focus effects) and there are no attenuation and no sound generation, so  
 

𝑝′∗(𝑥1, 𝑡1) = 𝑝′∗(𝑥2, 𝑡2)  
 

first let see the f component, 
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𝑓 (𝑡1 −
𝑥1

𝑎
) = 𝑓 (𝑡2 −

𝑥2

𝑎
) 

 
this true for an arbitrary function when arguments are the same, 

 

𝑡1 −
𝑥1

𝑎
= 𝑡2 −

𝑥2

𝑎
 

 
and 

 

𝑎 =
𝑥2 − 𝑥1

𝑡2 − 𝑡1
 

 
That means, the section in the wave front noted with star, propagates in the positive x direction with the speed 
a. Generally the special form of the argumentum means, that the wave propagates from left to right, with the 
speed of sound a. The g function component describes the waves, traveling in negative x direction. 

 
Harmonic waves: 

- Harmonic mechanic excitation will create harmonic (mono chromatic, pure tone) sound wave. 

- Harmonic waves can described with sine or cosine functions. 

- The importance of the harmonic waves can explain as the sine and cosine functions are the base element of 
the harmonic (Fourier) decomposition, and the natural (free) vibration of the finite size flexible structure are 
harmonic vibrations (the harmonic vibration will radiate harmonic sound wave). Natural or free vibration means, 
that after the initial excitation the will system moves on its own, without any external interaction. 

- The argument of the sine or cosine must be an angle, so any change required at argument of the general 
solution, and we have to introduce the phenomena phase (quantity inside the bracets right hand side) and phase 
state of the wave, 

 

𝜔 (𝑡 −
𝑥

𝑎
) = (𝜔𝑡 −

𝜔

𝑎
𝑥) = (𝜔𝑡 − 𝑘𝑥) 

 
The wave function of a �̂� amplitude, ω angular frequency harmonic sound wave traveling in the positive x 
direction for the sound pressure variable is, 

 

𝑝′(𝑥, 𝑡) = �̂� ⋅ 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜑0) 
 
Where: 

Note Measurement unit Name Meaning 

p’(x,t) [Pa] sound pressure Instantaneous pressure difference form the equilibrium value in the 
sound field 

�̂� [Pa] sound pressure 
amplitude 

the biggest pressure (magnitude) difference from the equilibrium 
value 

ωt-kx+φ0 [rad] phase angle the position of the rotating sound pressure amplitude vector 

ω=2π/T [rad/sec] angular frequency the phase angle per unit time taken by the wave 

T [sec] time of period at x=const. place the time difference between two neighbouring 
phase state of the wave (e.g.: the time shift between two 
neighbouring positive maximum) 

f=1/T [Hz] frequency number of period per unit time 

k=2π/λ [rad/m] wavenumber the phase angle per unit length taken by the wave 

λ [m] wave length at t=const. time the distance between two neighbouring phase state 
of the wave (e.g.: the distance between two neighbouring positive 
maximum)) 
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φ0 [rad] initial phase angle allow to start the wave from arbitrary phase angle at t=0sec time 
and x=0m position 

 
Turn back to the original form of the argument, inside the bracket the denominator of the second term is the 
phase velocity,  

𝜔𝑡 − 𝑘𝑥 = 𝜔 (1 −
𝑥

𝜔 𝑘⁄
) = 𝜔 (1 −

𝑥

𝑎𝑓
)  ,   𝑎𝑓 =

𝜔

𝑘
=

2𝜋 𝑇⁄

2𝜋 𝜆⁄
=

𝜆

𝑇
 

 
The complex exponential representation of harmonic waves: 

The complex exponential wave function of a �̂� amplitude, ω angular frequency harmonic sound wave traveling 
in the positive x direction for the sound pressure variable (noted with bold p letter) is, 
 

𝒑′(𝑥, 𝑡) = �̂� ⋅ 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥 + 𝜑0) + 𝑖 ⋅ �̂� ⋅ 𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥 + 𝜑0) = �̂� ⋅ 𝑒𝑖(𝜔𝑡−𝑘𝑥+𝜑0) = 
 

= �̂� ⋅ 𝑒𝑖𝜑0 ⋅ 𝑒𝑖(𝜔𝑡−𝑘𝑥) = �̂� ⋅ 𝑒𝑖(𝜔𝑡−𝑘𝑥) 
 

where the complex sound pressure amplitude (independent from t and x) is,   �̂� = �̂� ⋅ 𝑒𝑖𝜑0 
 
The advantage of the complex exponential representation is the much more simple mathematic formalism and 
operation than the trigonometric one. Completed the mathematic derivations, to get the factual sound pressure 
we have to take the real part of the complex amount, 

 

𝑝′(𝑥, 𝑡) = 𝑅𝑒(𝒑′(𝑥, 𝑡)) 

 
 
6.2. The solution of the 1D homogeneous wave equation in closed space, tube resonators (lecture notes) 

The general and harmonic particular solution of the wave equation related the free sound propagation. This is 
perfect mathematic model to solve a lot of mechanical engineering noise problem (e.g.: noise calculation of a 
roof fan or a road car). Another big amount of acoustic engineering exercise belongs to closed space, bordered 
by walls, that block the sound propagation (calculation of noise in a workshop caused by loud machines, or the 
modification of the sound field in a tube). To analyse the problem, we will build up a mathematic model, that 
allow concrete engineering design calculation, and deeper physical understanding. The first model let be one 
dimensional, so along the x coordinate at x= 0 m and x= L m position, perpendicular to the x coordinate two wall 
(with big mass and rigidity, without any holes and porosity), that is not transparent for sound is inserted. 

 

x 

v’(0, t)= 0 m/s v’(L, t)= 0 m/s 

Rigid, big mass walls are the 
borders of the sound field 

 

 

Big mass and rigid, airtight walls block the sound propagation 
 
The fluid mechanical no-slip condition states, that the relative velocity between the rigid body surface and the 
contacting fluid surface is zero. If the wall is in static rest, the neighbouring fluid particles will not move too. So 
the boundary conditions are, 
 

v’(0, t)= 0 m/s       és       v’(L, t)= 0 m/s 
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The presence of the walls will not effect the validity of the continuity equation, the equation of motion, the energy 
equation and the state equation for perfect gases and the simplifications applied earlier at the linear model. So 
in this case the mathematic model can start from the homogeneous wave equation. Concerning the boundary 
conditions let change the sound pressure variable, to the particle velocity, 

 

1

𝑎2

𝜕2𝑣′

𝜕𝑡2
−

𝜕2𝑣′

𝜕𝑥2
= 0 

 
The general solution, 

 

𝑣′(𝑥, 𝑡) = 𝑓(𝑎𝑡 − 𝑥) + 𝑔(𝑎𝑡 + 𝑥) 
 
Let apply the boundary conditions at x= 0 m and x= L m  
 

𝑣′(0, 𝑡) = 0 = 𝑓(𝑎𝑡 − 0) + 𝑔(𝑎𝑡 + 0)      so,    𝑓(𝑎𝑡) = −𝑔(𝑎𝑡) 
 

𝑣′(𝐿, 𝑡) = 0 = 𝑓(𝑎𝑡 − 𝐿) + 𝑔(𝑎𝑡 + 𝐿) = −𝑔(𝑎𝑡 − 𝐿) + 𝑔(𝑎𝑡 + 𝐿)    so,     𝑔(𝑎𝑡) = 𝑔(𝑎𝑡 + 2𝐿) 
 
If g is periodic, the Fourie series, 

 

𝑔(𝑎𝑡 ± 𝑥) =
𝛼0

2
+ ∑ [𝛼𝑛𝑐𝑜𝑠

2𝜋𝑛

2𝐿
(𝑎𝑡 ± 𝑥) + 𝛽𝑛𝑠𝑖𝑛

2𝜋𝑛

2𝐿
(𝑎𝑡 ± 𝑥)]

∞

𝑛=1

 

 
The 2L is the length of the period, the wave length, so the 2π/2L ratio is the wave number 
 

2𝜋𝑛

2𝐿
=

2𝜋𝑛

2𝜆
= 𝑘 ⋅ 𝑛 = 𝑘𝑛 

 
Where  n= 1, 2, 3, … (natural numbers) 
 
Let go back to the general solution of the wave equation, 
 

𝑣′(𝑥, 𝑡) = 𝑓(𝑎𝑡 − 𝑥) + 𝑔(𝑎𝑡 + 𝑥) = −𝑔(𝑎𝑡 − 𝑥) + 𝑔(𝑎𝑡 + 𝑥) = 
 

= −
𝛼0

2
− ∑[𝛼𝑛𝑐𝑜𝑠𝑘𝑛(𝑎𝑡 − 𝑥) + 𝛽𝑛𝑠𝑖𝑛𝑘𝑛(𝑎𝑡 − 𝑥)] +

∞

𝑛=1

 

+
𝛼0

2
+ ∑[𝛼𝑛𝑐𝑜𝑠𝑘𝑛(𝑎𝑡 + 𝑥) + 𝛽𝑛𝑠𝑖𝑛𝑘𝑛(𝑎𝑡 + 𝑥)]

∞

𝑛=1

 

 

= ∑[𝛼𝑛(𝑐𝑜𝑠𝑘𝑛(𝑎𝑡 + 𝑥) − 𝑐𝑜𝑠𝑘𝑛(𝑎𝑡 − 𝑥)) + 𝛽𝑛(𝑠𝑖𝑛𝑘𝑛(𝑎𝑡 + 𝑥) − 𝑠𝑖𝑛𝑘𝑛(𝑎𝑡 − 𝑥))] =

∞

𝑛=1

 

 
After the application some trigonometric identity, 
 

= ∑[−2𝛼𝑛𝑠𝑖𝑛𝑘𝑛𝑎𝑡 𝑠𝑖𝑛𝑘𝑛𝑥 + 2𝛽𝑛𝑐𝑜𝑠𝑘𝑛𝑎𝑡 𝑠𝑖𝑛𝑘𝑛𝑥]

∞

𝑛=1
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𝑣′(𝑥, 𝑡) = ∑[𝑠𝑖𝑛𝑘𝑛𝑥(−2𝛼𝑛𝑠𝑖𝑛𝜔𝑛𝑡 + 2𝛽𝑛𝑐𝑜𝑠𝜔𝑛𝑡)]

∞

𝑛=1

 

 

Where:       𝑘𝑛 =
2𝜋

2𝐿
𝑛      , and         𝜔𝑛 =

2𝜋

2𝐿
𝑛𝑎 

 
Comments: 

- In the argument of the new wave function the x and t variables separate, the special (t±x/a) argumentum 
disappeared, so the new occurrence is not a traveling wave. (It must be true, the presence of the walls block the 
sound propagation!) 

- The new wave function suggests that, there is a characteristic change in the physical state. To understand 
what is the new phenomena let take n-th element of the solution series, and let be −2𝛼𝑛 = 𝑣 , and βn = 0 than, 

 

𝑣′𝑛(𝑥, 𝑡) = 𝑣 𝑠𝑖𝑛𝜔𝑛𝑡 𝑠𝑖𝑛𝑘𝑛 
 
The particle velocity between the walls, where knx= 0, π, 2π, 3π, …  (at x= 0m and x= Lm too) independently 
from time, is 0m/s, these are the nodal points of the wave. Shifted with π/2 radian, where knx= π/2, 3π/2, 5π/2, 
… the amplitude of the wave will be maximised, these are the maximum amplitude (anti nodal) points of the 
wave. It is very important to understand, between two neighbouring nodal points all of the fluid particles move in 
the same phase, but with different amplitude. So as a consequence of the wall the propagating wave turns to 
the vibration of a continuous, flexible medium, that can characterise with a periodic structure of nodal and 
maximum amplitude point (like a vibrating spiral spring with fixed ends in walls). 
 

 

x 

Maximum amplitude points 

Nodal point 

v’ t0 t1 

t3 t4= t0+T/2 

t2 

 

The particle velocity distribution between walls at different time 
 
- The αn and βn (Fourier) coefficients can determine from the v', particle velocity distribution at the starting (t= 0 
sec) time, with other words from the initial condition. 

- The ω1, ω2, ω3, …, and the k1, k2, k3, …, constants are the eigenvalues of the problem (belongs to a concrete 
geometric arrangement and medium). The ω1 is called the first natural angular frequency or the base angular 
frequency and ω2, ω3, ω4, … are the upper harmonic angular frequencies. The eigenfunctions of the problem,  

 

𝑣′1(𝑥, 𝑡) = 𝑠𝑖𝑛𝑘1𝑥(−2𝛼1𝑠𝑖𝑛𝜔1𝑡 + 2𝛽1𝑐𝑜𝑠𝜔1𝑡) 

𝑣′2(𝑥, 𝑡) = 𝑠𝑖𝑛𝑘2𝑥(−2𝛼2𝑠𝑖𝑛𝜔2𝑡 + 2𝛽2𝑐𝑜𝑠𝜔2𝑡) 

                                             𝑣′3(𝑥, 𝑡) = ⋯ 
 

satisfying the wave equation and the boundary conditions together. 

- It is very important to understand, that the eigenfunctions are possibilities for the vibrating system. The fact wat 
will happen in the bordered sound field fundamentally depends on the excitation. If somebody is speaking in a 
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room, we will hear the sound of the speaker. The natural vibrations described by eigenfunctions can hear after 
a sound impulse excitation (e.g.: somebody clap his hand one time). Similarly when a guitar string is twanged. 
The natural vibrations have big importance in the engineering work, when the excitation frequency coincides 
one natural frequency of system, resonance will appear. All of the resonant behaviour can characterise with 
small amplitude excitation and big amplitude answer. The big amplitude answer in acoustics will result disturbing 
noisy effects, but generally an unwanted amplification of the system behaviour, so in the engineering practise 
usually we do not like and try to avoid resonance. 

- Let be the eigenfunction of a vibrating system for the particle velocity, 
 

𝑣′(𝑥, 𝑡) = 𝑣 ̂𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛𝑘𝑥 
 
The eigenfunction for the sound pressure variables can derive from the equation of motion, 
 

𝑝′(𝑥, 𝑡) = −𝜌0 ∫
𝜕𝑣′

𝜕𝑡
𝑑𝑥 = −𝜌0 ∫

𝜕

𝜕𝑡
(�̂� 𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛𝑘𝑥)𝑑𝑥 = 𝜌0

𝜔

𝑘
𝑣 𝑐𝑜𝑠𝜔𝑡 𝑐𝑜𝑠𝑘𝑥 = 

= 𝜌0𝑎𝑣 𝑠𝑖𝑛 (𝜔𝑡 +
𝜋

2
) 𝑠𝑖𝑛 (𝑘𝑥 +

𝜋

2
) = �̂� 𝑠𝑖𝑛 (𝜔𝑡 +

𝜋

2
) 𝑠𝑖𝑛 (𝑘𝑥 +

𝜋

2
) 

 
The relation between the sound pressure and particle velocity amplitudes are �̂� = 𝜌0𝑎𝑣 (well known from the 
linear algebraic model), and between the sound pressure and particle velocity a quarter period, π/2 radian phase 
shift is inserted (similar, than the mass and spring one degree of freedom mechanic vibrating system). 
 
6.3. Test questions and solved problems 

T.Q.1. Write the mathematic formulation and explain the physical meaning of the general solution of the 
homogeneous wave equation! 

T.Q.2. Put down the wave function of harmonic waves, in trigonometric and complex representation, and explain 
their importance! 

T.Q.3. Explain in details the solution of the 1D homogeneous wave equation in closed space, and the tube 
resonators! 

S.P.1. Let calculate the first and third natural frequency of a 4.5m long tube, when one end is open, and the 

other and is blocked! The inside air temperature is 25C. 
 
Solution: 

The speed of sound is: 𝑎 = √𝜅𝑅𝑇0 = √1,4 ∙ 287 ∙ (273 + 25) ≈ 346 𝑚 𝑠⁄    

 
The effect inside the tube is a free harmonic continuum vibration, described by sine or cosine functions. The 
sine or cosine sections, satisfying the boundary conditions, can see below. 
 
 

x 

v’ v’1 

x 

v’ v’2 

x 

v’ v’3 

First natural frequency Second natural frequency Third natural frequency 
 

Closed tube end Open tube end 

4.5m 4.5m 4.5m 

 

The particle velocity distribution along a one end is open, and other and is blocked tube, at the first, second 
and third natural frequency 
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The first natural (base) frequency: based on the boundary condition the particle velocity distribution is a quarter 
sinus from a minimum to the next minimum 

𝜆1 = 4 ∙ 𝑙 1⁄ = 4 ∙ 4,5 = 18  𝑚      𝑓1 = 𝑎 𝜆1⁄ ≈ 346 18⁄ ≈ 19,2  𝐻𝑧 

The third natural (second upper harmonic) frequency: based on the boundary condition the particle velocity 
distribution is a one and quarter sinus from a minimum to the second maximum:  

𝜆3 = 4 ∙ 𝑙 5⁄ = 4 ∙ 4,5 5⁄ = 3,6  𝑚 ,      𝑓3 = 𝑎 𝜆3⁄ ≈ 346 3,6⁄ ≈ 96,1  𝐻𝑧 

----- 


