\qquad
\qquad Neptune code: \qquad

A. Group

A / Problem 1.

Convert the following quantities to the given dimensions!
$165 \mathrm{hl} / \mathrm{h}=$? $\mathrm{m}^{3} / \mathrm{s}$
$0.234 \mathrm{t} / \mathrm{dm}^{3}=? \mathrm{~kg} / \mathrm{m}^{3}$

A / Problem 2.

Define absolute and relative error! How should the relative error of a quantity be calculated, if it was calculated from multiple measured quantities?

A / Problem 3.

The volume flow rate of a water supply pipe network is measured using a lossless Venturi meter which lies in the horizontal plane. The diameter of the pipe system is D1 $=200 \mathrm{~mm}$, the smaller diameter of the Venturi meter is $\mathrm{D} 2=150 \mathrm{~mm}$, and the fluid can be considered incompressible. The pressure drop across the Venturi meter is measured using an inverted (upside down) U-tube manometer. The density of water is $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m} 3$, the density of air is $\rho_{\text {air }}=1.2 \mathrm{~kg} / \mathrm{m3}$, and the displacement measured on the manometer was 500 mm .
ASSIGNMENT:
Determine how many cubic meters of water pass through the pipe every hour!

A / Problem 4.

A volume flow rate measurement was made using an inlet orifice. The volume flow rate for an inlet orifice having an inner diameter of 110 mm is $0.114 \mathrm{~m} 3 / \mathrm{s}$. The displacement of the water filled U tube manometer was 25 mm . ($\rho_{\text {air }}=1,2 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$). The accuracy (absolute error) of the diameter measurement is 1 mm , and the accuracy of the manometer reading is 0.2 mm . Make an error calculation, determining the values for the relative and absolute errors for the volume flow rate!
\qquad Neptune code: \qquad

B. Group

B / Problem 1.

Convert the following quantities to the given dimensions!
$165 \mathrm{l} / \mathrm{min}=$? $\mathrm{m}^{3} / \mathrm{s}$
$55 \mu \mathrm{~g} / \mathrm{l}=? \mathrm{~kg} / \mathrm{m}^{3}$

B / Problem 2.

How does an inverted (upside down) U-tube manometer work and when would one be used?
B / Problem 3.
(1.5 p)

We have determined the volume flow rate of the air passing through a pipe having an internal crosssectional area of $160 \times 200 \mathrm{~mm}$ by measuring the flow velocity in 4 points, assuming that the measured velocities are the average velocities measured for segments of equal area. The dynamic pressure in each point was measured with a Pitot-static (Prandtl) probe, which was connected to a water filled U-tube manometer. The displacement of the fluid, $\Delta \mathrm{h}$, is given in the table. Determine the volume flow rate of the air passing through the pipe, if the temperature is $5^{\circ} \mathrm{C}$, the pressure is 1010 mbar , and the specific gas constant of air is $287 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$.

$\Delta \mathrm{h}_{1}=$	20	mm
$\Delta \mathrm{~h}_{2}=$	29	mm
$\Delta \mathrm{~h}_{3}=$	17	mm
$\Delta \mathrm{~h}_{4}=$	22	mm

B / Problem 4.

We are displacing water from a tank using a ping-pong ball of diameter $\mathrm{D}=3.75 \mathrm{~cm}$. The diameter was measured using calipers having a precision of 0.1 mm . Determine the preciseness of the value for the volume of the ball, V , due to the measurement error associated with the diameter measurement, D ! Calculate the absolute and relative error for the value of V , and give the value of V , in any appropriate metric unit of your choice, together with the value for the measurement error, while utilizing an appropriate number of significant digits!

