Α	Determine the velocity distribution of a cylindrical jet in the following cross-sections:
	$z_1=0\cdot D_0, z_2=2\cdot D_0, z_3=4\cdot D_0, z_4=5\cdot D_0, z_5=6\cdot D_0, z_6=7\cdot D_0, z_7=8\cdot D_0, z_8=9\cdot D_0, z_9=10\cdot D_0$
	Take measurement points in the radial direction using the following increments ($\Delta r=2$, 5,
	and 10mm depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 75% of the maximum velocity.
	Check your results using the online validation program www.ara.bme.hu/lab!
В	Determine the velocity distribution of a cylindrical jet in the following cross-sections:
	$z_1=0\cdot D_0, z_2=2\cdot D_0, z_3=4\cdot D_0, z_4=5\cdot D_0, z_5=6\cdot D_0, z_6=7\cdot D_0, z_7=8\cdot D_0, z_8=9\cdot D_0, z_9=10\cdot D_0$
	Take measurement points in the radial direction using the following increments ($\Delta r=2$, 5,
	and 10mm depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 100% of the maximum velocity.
	Check your results using the online validation program www.ara.bme.hu/lab!
С	Determine the velocity distribution of a cylindrical jet in the following cross-sections:
	$z_1=0\cdot D_0, z_2=2\cdot D_0, z_3=4\cdot D_0, z_4=5\cdot D_0, z_5=6\cdot D_0, z_6=7\cdot D_0, z_7=8\cdot D_0, z_8=9\cdot D_0, z_9=10\cdot D_0$
	Take measurement points in the radial direction using the following increments ($\Delta r=2$, 5,
	and 10mm depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 50% of the maximum velocity.
	Check your results using the online validation program www.ara.bme.hu/lab!
D	Determine the velocity distribution of a cylindrical jet in the following cross-sections:
	$z_1=0\cdot D_0, z_2=2\cdot D_0, z_3=4\cdot D_0, z_4=5\cdot D_0, z_5=6\cdot D_0, z_6=7\cdot D_0, z_7=8\cdot D_0, z_8=9\cdot D_0, z_9=10\cdot D_0$
	Take measurement points in the radial direction using the following increments ($\Delta r=2$, 5,
	and 10mm depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 80% of the maximum velocity.
	Check your results using the online validation program www.ara.bme.hu/lab!
E	Determine the velocity distribution of a cylindrical jet in the following cross-sections:
	$z_1=0\cdot D_0, z_2=2\cdot D_0, z_3=4\cdot D_0, z_4=5\cdot D_0, z_5=6\cdot D_0, z_6=7\cdot D_0, z_7=8\cdot D_0, z_8=9\cdot D_0, z_9=10\cdot D_0$
	Take measurement points in the radial direction using the following increments ($\Delta r=2$, 5,
	and 10mm depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 60% of the maximum velocity.
	Check your results using the online validation program www.ara.bme.hu/lab!