FLUID MECHANICS TESTS

Attention: there might be more correct answers to the questions.

Chapter 6: Measurement in fluid mechanics

T.6.1.1The dimensions of the surface-tension constant σ are
a, $\mathrm{kg} / \mathrm{m}^{2}$
b, $\mathrm{kg} / \mathrm{s}^{2}$
c, $\mathrm{kg} / \mathrm{m}^{3}$
d, N / m
e, none of them are correct.
The answer is:
T.6.1.2The pressure difference between the inside of a bubble and the atmospheric pressure
a, is directly proportional to the diameter
b, is inversely proportional to the diameter
c, is inversely proportional to the surface
d, is directly proportional to the volume,
c, is independent of the diameter
The answer is:
T.6.1.3A U-shaped communicating vessel is made of glass, and is filled with water. One of its branches is a capillary with a small diameter. The pressure directly under the water level in the capillary is
a, smaller, than the environmental pressure
b, bigger, than the environmental pressure
c, equals to the environmental pressure
d, the rise of the waterspout increases as the capillary diameter increases
e, the rise of the waterspout increases as the capillary diameter decreases
The answer is:
T.6.2.1 There is an inclined manometer ($\alpha=30^{\circ}$), filled with alcohol ($\rho=800 \mathrm{~kg} / \mathrm{m}^{3}$). The surface height change in the reservoir is negligible. The liquid surface in the inclined pipe is $\mathrm{H}=200 \mathrm{~mm}$ higher than the reservoir surface, $\mathrm{g}=9,81 \mathrm{~N} / \mathrm{kg}$. The pressure difference $(\Delta \mathrm{p})$ is:
a, 784,8 Pa
b, 78,48 Pa
c, $0,57 \times 10^{6} \mathrm{~Pa}$
d, 1570 Pa
e, none of them are correct.
The answer is:
T.6.3.1 How can you express the flow rate, given the velocity field (\underline{v}), and the surface(A)?
a, $q_{v}=\int \rho v d A$
$\mathrm{b}, q_{v}=\oint \underline{v} d \underline{s}$
$\mathrm{c}, q_{v}=\int_{A} \underline{v} d \underline{A}$
$\mathrm{d}, q_{v}=\int_{A} v d A$
$\mathrm{e}, q_{v}=\sum_{i=1}^{n} v_{i} \Delta A_{i}$
The answer is:
T.6.3.2We can use the following expression for the measurement with a constrictor element:
$\mathrm{a}, q_{v}=\alpha \varepsilon \frac{d^{2} \pi}{4} \sqrt{\frac{\rho}{2}} \Delta p_{m}$
$\mathrm{b}, q_{v}=\varepsilon \frac{d^{2} \pi}{4} \sqrt{\frac{\rho}{2}} \sqrt{\Delta p_{m}}$
c, $q_{v}=\alpha \varepsilon \sqrt{\frac{d^{2} \pi}{4}} \frac{2}{\rho} \sqrt{\Delta p_{m}}$
d, $q_{v}=\alpha \varepsilon \frac{d^{2} \pi}{4} \sqrt{\frac{2}{\rho}} \sqrt{\Delta p_{m}}$
The answer is:
T.6.3.3 The correct expression for calculating velocity from a measurement with a Pitot-static tube (Prandtl probe) is:
a, $v=\sqrt{\frac{2 p_{\text {din }}}{\rho}}$
$\mathrm{b}, v=\sqrt{\frac{2}{\rho}} p_{s t}$
c, $v=\sqrt{\frac{2}{\rho}} p_{\text {ö }}$
$\mathrm{d}, v=\sqrt{\frac{2 p_{\dot{\mathrm{O}}}}{\rho}}$
$\mathrm{e}, v=\sqrt{\frac{2 p_{s t}}{\rho}}$
The answer is:
T.6.4.1In order to correctly model the flow around a moving body in the wind tunnel
a, the body has to be moved in the wind tunnel
b, the velocity field in the wind tunnel has to be uniform
c, the atmospheric turbulence has to be modelled correctly
d, the fluid turbulence has to be as low as possible.
The answer is:
T.6.4.2The cross-section closure ratio
a, is the ratio of the body and the air stream cross-section
b, is the ratio of the air stream and the body cross-section
c, should have a value of 0.05-0.1
d, should have a value of 0.2-0.4
The answer is:
T.6.4.3Assuming that the velocity, the temperature and the size of the body is constant, the increasing pressure of the flowing air in the wind tunnel:
a, increases the Reynolds number
b, decreases the Reynolds number
c, increases the Mach number
d, doesn't influence the Mach number
e, decreases the Mach number.
The answer is:

