

FLUID MECHANICS

TESTS

Attention: there might be more correct answers to the questions.

Chapter 10: Hydraulics

T.10.1.1 Real fluid flows in a pipeline that consist of straight and bent pipes, diffusers etc.

- a, Pressure always decreases in the direction of the flow.
- b, Pressure might increase in the direction of the flow.
- c, the Bernoulli-sum always increases in the direction of the flow.
- d, the Bernoulli-sum always decreases in the direction of the flow.

The answer is:

T.10.1.2 Using dimensional analysis

a, the number of dimensioned physical quantities (n) influencing the problem can be decreased.

b, n+r nondimensional groups can be created, where r is the rank of the dimension matrix

c, n-r nondimensional groups can be created

d, the type of dependence (power or trigonometric function etc.) between the nondimensional variables can be determined

The answer is:

T.10.2.1 Assuming a filled rectangular pipe cross-section of the size $a \times b$ the pipe friction loss can be determined using the equivalent diameter, d_e calculated as:

$$a, \frac{d_e\pi}{4} = a b$$

$$b, d_e\pi = 2(a+b)$$

$$c, d_e^2 = a^2 + b^2$$

$$d, d_e = \frac{4ab}{2(a+b)}$$

e, None of the above are correct.

The answer is:

T.10.2.2 In a turbulent pipe flow the pipe friction coefficient λ is the same for smooth and rough pipes if

- a, the pipe friction coefficient does not depend on the Reynolds number
- b, if the wall roughness size is smaller than the viscous sublayer thickness
- c, if the wall roughness size is greater than the viscous sublayer thickness
- *d*, if the Reynolds number is $\text{Re} > 10^5$
- e, None of the above are correct.

The answer is:

T.10.3.1When the flow separates from the diffuser wall

- a, losses are greater than in the non-separated case
- b, losses are smaller than in the non-separated case

Separation can be avoided by

- *c*, *decreasing the diffuser angle*
- *d*, *increasing the diffuser angle*
- e, Losses do not depend on the diffuser angle.

The answer is:

T.10.3.2 Choose the correct statements!

ose the confect statements.	1	1
	pressure	mean velocity
Diffuser inlet cross section	p_{in}	Vin
Diffuser outlet cross section		
— inviscid	p_{out}	Vout
— viscous	p_{outv}	Voutv

i

 $a, p_{in} < p_{out}$ and $p_{outv} < p_{out}$

b, $p_{in} < p_{out}$ and $p_{outv} > p_{out}$

- *c*, *v*_{in}<*v*_{out} and *v*_{out}<*v*_{out}
- *d*, $v_{in} > v_{out}$ and $v_{outv} > v_{out}$
- e, None of the above are correct.

The answer is:

T.10.4.1 Which of the following formulae are correct in case of a hydraulically smooth pipe?

a, If Re=2.3·10⁴ then
$$\lambda = \frac{64}{\text{Re}}$$
.
b, If Re=2.3·10⁴ then $\lambda = \frac{0.316}{\sqrt[4]{\text{Re}}}$.
c, If Re>2.3·10⁵ then $\lambda = \frac{0.316}{\sqrt[4]{\text{Re}}}$.
d, If Re<2.3·10³ then $\lambda = \frac{64}{\text{Re}}$.
e, If Re=5·10⁵ then $\lambda = \frac{0.316}{\sqrt[4]{\text{Re}}}$.

The answer is:

TZ.10.1 Friction loss in a pipe in case of a turbulent flow

- *a*, *is roughly directly proportional to the mean velocity*
- b, is inversely proportional to the mean velocity squared
- *c*, *is roughly inversely proportional to the diameter squared*
- *d*, *depends* on the position of the pipe
- e, is roughly proportional to the mean velocity squared

The answer is:

TZ.10.2Hydraulically equivalent diameter

- *a*, *is the ratio of the wetted perimeter over the cross-section*
- *b*, *is the ratio of cross-section over the square root of wetted perimeter*
- *c, is the ratio of two times the cross-section over the wetted perimeter*
- *d*, *is the ratio of four times the cross-section over the wetted perimeter*
- e, None of the above are correct.

The answer is:

TZ.10.3 Friction loss in a rough pipe is $\Delta p'_r$. In a smooth pipe of the same size, it is $\Delta p'_s$. The flow rate q_v , pipe length and the fluid are the same.

- $a,\Delta p'_r > \Delta p'_s$ for all q_v
- b, $\Delta p'_r$ can be smaller than $\Delta p'_s$
- *c*, $\Delta p'_r$ can be equal to $\Delta p'_s$
- *d*, $\Delta p'_r$ can be greater than $\Delta p'_s$

$$e, \frac{\Delta p'_r}{\Delta p'_s}$$
 is constant for all q_v

The answer is:

TZ.10.4 Choose the correct statements!

	pressure	mean velocity
Diffuser inlet cross section	p_{in}	Vin
Diffuser outlet cross section		
— inviscid	p_{out}	Vout
— viscous	p_{outv}	Voutv

i.

Diffuser efficiency η_{diff} is calculated as:

$$a, \frac{p_{outv} - P_{in}}{p_{out} - p_{in}}$$

$$b, \frac{\frac{\rho}{2}(v_{in}^2 - v_{outv}^2)}{\frac{\rho}{2}(v_{in}^2 - v_{out}^2)}$$

$$c, p_{out} - p_{outv} = (1 - \eta_{diff})(p_{outv} - p_{in})$$

$$d, \frac{p_{outv} + \frac{\rho}{2}v_{outv}^2}{p_{in} + \frac{\rho}{2}v_{in}^2}$$

e, None of the above are correct.