FLUID MECHANICS

TESTS

Attention: there might be more correct answers to the questions.

Chapter 10: Hydraulics

T.10.1.1 Real fluid flows in a pipeline that consist of straight and bent pipes, diffusers etc.
a, Pressure always decreases in the direction of the flow.
b, Pressure might increase in the direction of the flow.
c, the Bernoulli-sum always increases in the direction of the flow.
d, the Bernoulli-sum always decreases in the direction of the flow.
The answer is:
T.10.1.2 Using dimensional analysis
a, the number of dimensioned physical quantities (n) influencing the problem can be decreased.
$b, n+r$ nondimensional groups can be created, where r is the rank of the dimension matrix
$c, n-r$ nondimensional groups can be created
d, the type of dependence (power or trigonometric function etc.) between the nondimensional variables can be determined

The answer is:
T.10.2.1 Assuming a filled rectangular pipe cross-section of the size $a \times b$ the pipe friction loss can be determined using the equivalent diameter, d_{e} calculated as:
$a, \frac{d_{e} \pi}{4}=a b$
$b, d_{e} \pi=2(a+b)$
c, $d_{e}^{2}=a^{2}+b^{2}$
$d, d_{e}=\frac{4 a b}{2(a+b)}$
e, None of the above are correct.
The answer is:
T.10.2.2 In a turbulent pipe flow the pipe friction coefficient λ is the same for smooth and rough pipes if
a, the pipe friction coefficient does not depend on the Reynolds number
b, if the wall roughness size is smaller than the viscous sublayer thickness
c, if the wall roughness size is greater than the viscous sublayer thickness
d, if the Reynolds number is $\mathrm{Re}>10^{5}$
e, None of the above are correct.
The answer is:
T.10.3.1When the flow separates from the diffuser wall
a, losses are greater than in the non-separated case
b, losses are smaller than in the non-separated case
Separation can be avoided by
c, decreasing the diffuser angle
d, increasing the diffuser angle
e, Losses do not depend on the diffuser angle.
The answer is:
T.10.3.2 Choose the correct statements!

	pressure	mean velocity
Diffuser inlet cross section	$p_{\text {in }}$	$v_{\text {in }}$
Diffuser outlet cross section		
- inviscid	$p_{\text {out }}$	$v_{\text {out }}$
- viscous	$p_{\text {outv }}$	$v_{\text {outv }}$

a, $p_{\text {in }}<p_{\text {out }}$ and $p_{\text {outv }}<p_{\text {out }}$
$b, p_{\text {in }}<p_{\text {out }}$ and $p_{\text {outv }}>p_{\text {out }}$
c, $v_{\text {in }}<v_{\text {out }}$ and $v_{\text {outv }}<v_{\text {out }}$
$d, v_{\text {in }}>v_{\text {out }}$ and $v_{\text {outv }}>v_{\text {out }}$
e, None of the above are correct.
The answer is:
T.10.4.1 Which of the following formulae are correct in case of a hydraulically smooth pipe?
a, If $\mathrm{Re}=2.3 \cdot 10^{4}$ then $\lambda=\frac{64}{\mathrm{Re}}$.
b, If $\operatorname{Re}=2.3 \cdot 10^{4}$ then $\lambda=\frac{0.316}{\sqrt[4]{\operatorname{Re}}}$.
c, If $\operatorname{Re}>2.3 \cdot 10^{5}$ then $\lambda=\frac{0.316}{\sqrt[4]{\mathrm{Re}}}$.
d, If $\operatorname{Re}<2.3 \cdot 10^{3}$ then $\lambda=\frac{64}{\operatorname{Re}}$.
e, If $\mathrm{Re}=5 \cdot 10^{5}$ then $\lambda=\frac{0.316}{\sqrt[4]{\operatorname{Re}}}$.
The answer is:
TZ.10.1 Friction loss in a pipe in case of a turbulent flow
a, is roughly directly proportional to the mean velocity
b, is inversely proportional to the mean velocity squared
c, is roughly inversely proportional to the diameter squared
d, depends on the position of the pipe
e, is roughly proportional to the mean velocity squared
The answer is:

TZ.10.2Hydraulically equivalent diameter
a, is the ratio of the wetted perimeter over the cross-section
b, is the ratio of cross-section over the square root of wetted perimeter
c, is the ratio of two times the cross-section over the wetted perimeter
d, is the ratio of four times the cross-section over the wetted perimeter
e, None of the above are correct.
The answer is:
TZ.10.3 Friction loss in a rough pipe is Δp_{r}^{\prime}. In a smooth pipe of the same size, it is Δp_{s}^{\prime}. The flow rate q_{v}, pipe length and the fluid are the same.
a, $\Delta p_{r}^{\prime}>\Delta p_{s}^{\prime}$ for all q_{v}
$b, \Delta p_{r}^{\prime}$ can be smaller than Δp_{s}^{\prime}
c, Δp_{r}^{\prime} can be equal to Δp_{s}^{\prime}
d, Δp_{r}^{\prime} can be greater than Δp_{s}^{\prime}
$e, \frac{\Delta p_{r}^{\prime}}{\Delta p_{s}^{\prime}}$ is constant for all q_{v}
The answer is:
TZ.10.4 Choose the correct statements!

	pressure	mean velocity
Diffuser inlet cross section	$p_{\text {in }}$	$v_{\text {in }}$
Diffuser outlet cross section		
- inviscid	$p_{\text {out }}$	$v_{\text {out }}$
- viscous	$p_{\text {outv }}$	$v_{\text {outv }}$

Diffuser efficiency $\eta_{\text {diff }}$ is calculated as:
a, $\frac{p_{\text {outv }}-P_{\text {in }}}{p_{\text {out }}-p_{\text {in }}}$
b, $\frac{\frac{\rho}{2}\left(v_{\text {in }}^{2}-v_{\text {outv }}^{2}\right)}{\frac{\rho}{2}\left(v_{\text {in }}^{2}-v_{\text {out }}^{2}\right)}$
$c, p_{\text {out }}-p_{\text {outv }}=\left(1-\eta_{\text {diff }}\right)\left(p_{\text {outv }}-p_{\text {in }}\right)$
d, $\frac{p_{\text {outv }}+\frac{\rho}{2} v_{\text {outv }}^{2}}{p_{\text {in }}+\frac{\rho}{2} v_{\text {in }}^{2}}$
e, None of the above are correct.

