TOP-FUEL DRAGSTER WING DESIGN USING CFD

 AND ITS INFLUENCE ON VEHICLE DYNAMIC PERFORMANCEBy
TONY MICHAEL BURATTI
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
1998

Submitted to the Faculty of the Graduate College of Oklahoma State University in partial fulfillment of the requirements for the Degree of
MASTERS OF SCIENCE
December, 2000

TOP-FUEL DRAGSTER WING DESIGN USING CFD AND ITS INFLUENCE ON VEHICLE DYNAMIC PERFORMANCE

Thesis Approved:

Thesis Advisor
\qquad
\qquad

Dean of the Graduate College

ACKNOWLEDGEMENTS

I am deeply grateful to my parents, Richard M. and Joyce K. Buratti, for their love, support and encouragement. They have instilled in me the value of hard work and dedication which has helped me to become who I am today. Special thanks goes to my grandmother, Frances Henson, for her love and support that she has provided.

I also extend my appreciation to the faculty and staff of the Mechanical and Aerospace Engineering department at Oklahoma State University who have adopted me and encouraged me to be successful. I would also like to thank the other members of my committee, Dr. David G. Lilley and Dr. Gary E. Young, for their suggestions and comments throughout this research.

Mr. Brian Vermillion of Advanced Racing Composites has provided support through his knowledge, information, and insight into the racing community. I appreciate all his time and resources that he has provided in support of my research and education. I would also like to thank Dr. Kajal K. Gupta of NASA Dryden Flight Resource Center for his support and sponsorship.

Lastly, I wish to express my sincere appreciation to my graduate advisor, Dr. Andrew S. Arena Jr., for his continual support and guidance throughout the last couple of years. He has been inspirational through his teachings and will continue to serve as a great mentor throughout my professional career.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 Background 1
1.2 Research Objective 3
II. LITERATURE REVIEW 4
2.1 Dynamics of Vehicles 4
2.1.1 Tire Tread Momentum Theory 5
2.1.2 Critical Speed Model 6
2.2 Characteristics and Dynamics of Rotating Wheels 10
2.2.1 Dynamics of Tires 10
2.2.2 Tire Aerodynamic Studies 11
2.2.3 Top-Fuel Dragster Tires 17
2.3 Wing Design 20
2.3.1 Multi-element Wings 20
2.3.2 Limitations on Rear Wing Design for Top-Fuel Dragsters 22
2.3.3 Typical Top-Fuel Dragster Wings 22
2.3.4 Endplate Design 25
III. METHODOLOGY 26
$3.1 \quad$ Modeling the Dragster 26
3.1.1 Wheel Properties Used 27
3.1.2 Rear Wing Properties Used 28
3.1.3 Equations of Motion 28
3.2 Validation of the Dragster Model 31
3.3 STARS CFD Module 35
3.4 Implementing the Dragster Wing into STARS 36
3.4.1 Geometry Specifications in STARS 37
3.4.2 Grid Specifications in STARS 40
3.4.2.1 SURFACE Module 41
3.4.2.2 VOLUME Module 42
3.4.3 Boundary Condition Specification in STARS 42
3.4.3.1 SETBND Module 44
3.4.4 Solver Control Specifications 45
3.4.4.1 EULER Module 45
3.5 The Effects that Endplates have on Rear Wing Performance 46
3.6 Box Wing Design 47
IV. RESULTS 53
$4.1 \quad$ Effects of Endplate on Three-Element Dragster Wings 53
4.1.1 Pressure Contours 54
4.1.2 Cross-Flow Velocity 59
4.1.3 Velocity at the Tip of the Wing. 69
4.1.4 Down Force to Drag Ratio 71
4.1.5 Mach Number and Coefficient of Pressure Distribution 73
4.2 Gap Spacing Comparisons for a Three-Element Dragster Wing 76
4.3 Angle of Attach Comparisons of Three-Element Dragster Wings. 78
4.4 World Record Performances 80
4.5 Using the Dragster Model to Analyze the Problem 80
4.6 Steady Results of Boxwing Design 89
4.6.1 Decalage Angle Comparisons 89
4.6.1.1 Pressure Plots 90
4.6.1.2 Mach Plots 93
4.6.2 Boxwing and Three-Element Wing Comparisons 96
4.7 Dragster Performance Comparisons using the Dynamic Model 100
4.7.1 Performance Data for Various Rear Wings 101
4.7.2 Performance Data for Various Input Power Curves 103
V. CONCLUSIONS AND RECOMMENDATIONS 107
5.1 Conclusions 107
5.1.1 Dynamic Dragster Model. 107
5.1.2 Endplate Effects on a Top-Fuel Dragster Rear Wing 108
5.1.3 Boxwing Design. 108
5.2 Recommendations 109
|5.2.1 Dynamic Dragster Model 109
5.2.2 Endplate Design Improvements 110
5.2.3 Boxwing Design. 111
5.2.4 Stability of the Dragster 111
BIBLIOGRAPHY 112
AAPPENDIX A-1 115
STARS-CFD Geometry Data File (fin.sur) 115
APPENDIX A-2. 127
STARS-CFD Background Mesh Data File (fin.bac) 127
APPENDIX A-3. 129
STARS-CFD Boundary Conditions Data File (fin.bco) 129
APPENDIX A-4. 130
STARS-CFD Parameter Control File (fin.cons) 130
APPENDIX B-1 131
STARS-CFD Geometry Data File (boxwing.sur) 131
APPENDIX B-2 139
STARS-CFD Background Mesh Data File (boxwing.bac) 139
APPENDIX B-3 141
STARS-CFD Boundary Conditions Data File (boxwing.bco) 141
APPENDIX B-4 142
STARS-CFD Parameter Control File (boxwing.cons) 142
APPENDIX C-1 143
Selig 1223 Airfoil Coordinate Data. 143
VITA 145

LIST OF TABLES

Table Page
3-1: Lift and Drag Coefficients for the Tires from Cogotti's Research 27
3-2: Surface Region Flags. 43
3-3: Curve Segment Flags 43
4-1: Down Force and Drag for the Three Test Cases Analyzed 72
4-2: Increase of Lift to Drag Ratio for the Three Test Cases Analyzed. 73
4-3: Lift and Drag Coefficients for the Dragster Model 82

LIST OF FIGURES

Figure1-1: Schematic of a top-fuel dragster1
2-1: Drag Tire Schematic 5
2-2: Schematic of an AA/FD Dragster with Forces 8
2-3: Schematic of the Contact Patch 11
2-4: Schematic of Magnus Effects 13
2-5: Experimental Study of Flow Past a Stationary and Rotating Wheel 14
2-6: Pressure Distribution Around the Wheels of a Vehicle 14
2-7: Reynolds Number Effects on the Coefficient of Drag 15
2-8: Flow Pattern Around a Smooth Cylinder at Various Re Number 16
2-9: Static View of a Top-Fuel Dragster Tire 17
2-10: Tire Expansion on Top-Fuel Dragster Burnout 18
2-11: Top-Fuel Dragster Tire at the Start of a Run 19
2-12: Effects of Multiple Elements on the Coefficient of Lift. 21
2-13: Endplate Size Dimensions 24
3-1: Dragster Run Schematic Showing Two Areas 29
3-2: Validation of Position vs Time for a Top-Fuel Dragster (1/4 Mile) 32
3-3: Validation of Speed vs Time for a Top-Fuel Dragster (1/4 Mile). 33
3-4: Validation of Acceleration vs Time for a Top-Fuel Dragster (1/4 Mile) 34
Figure
3-5: Validation of Speed vs Position for a Top-Fuel Dragster (1/4 Mile) 35
3-6: Wing Geometry Specification 38
3-7: Rendered View of a Half-Span model with a Style 3 Endplate 39
3-8: Half Model of Dragster Rear Wing Mesh Density 40
3-9: Three Different Endplate Geometry Analyzed 46
3-10: Selig 1223 Airfoil 48
3-11: Effect of the Number of Elements on an F-1 Type Wing 49
3-12: Decalage Angle 50
3-13: Rendered View of half model Boxwing with a 12° Decalage Angle 52
4-1: Pressure Contours of the Wing without an Endplate. 54
4-2: Pressure Contour of Wing with Style 3 Endplate 56
4-3: Pressure Contour of Wing with New Style Endplate 57
4-4: Pressure Gradient for Style 3 Endplate 58
4-5: Cross Flow Velocity Cuts Represented by Vertical Lines 60
4-6: Cross-Flow Velocity 7 in. back from L.E. w/o an Endplate 61
4-7: Cross-Flow Velocity 14 in. back from L.E. w/o an Endplate 62
4-8: Cross-Flow Velocity 20 in. back from L.E. w/o an Endplate 63
4-9: Cross-Flow Velocity 7 in. back from L.E. with Style 3 Endplate 64
4-10: Cross-Flow Velocity 14 in. back from L.E. with Style 3 Endplate 65
4-11: Cross-Flow Velocity 20 in. back from L.E. with Style 3 Endplate 66
4-12: Cross-Flow Velocity 7 in. back from L.E. with New Endplate 67
4-13: Cross-Flow Velocity 14 in. back from L.E. with New Endplate 68
Figure Page
4-14: Cross-Flow Velocity 20 in. back from L.E. with New Endplate 68
4-15: Velocity at the Wingtip without an Endplate 69
4-16: Velocity just inside Style 3 Endplate 70
4-17: Velocity just inside New Endplate 71
4-18: Pressure Distribution at the Tip of the Wing for Three Configurations 74
4-19: Mach Distribution at the Tip of the Wing for the Three Configurations 75
4-20: Velocity Profile of Wing with Original Gap Spacing 76
4-21: Velocity Profile of Wing with Modified Gap Spacing. 77
4-22: Pressure Plots for Angle of Attack Comparisons 79
4-23: Input Power Curve and Acceleration Power Curve versus Time. 81
4-24: Power Curves along with Drag Power versus Time. 83
4-25: Elapsed Time and Speed Data for Varying Drag Coefficient 84
4-26: Elapsed Time and Critical Speed Data for Varying Drag Coefficient 85
4-27: Elapsed Time and Speed Data for Varying Lift Coefficient 86
4-28: Elapsed Time and Critical Speed Data for Varying Lift Coefficient 88
4-29: Pressure Plot for Boxwing at 0 Degree Decalage Angle 91
4-30: Pressure Plot for Boxwing at 8 Degree Decalage Angle 92
4-31: Pressure Plot for Boxwing at 12 Degree Decalage Angle 93
4-32: Mach Number Plot for Boxwing with 0 Degree Decalage Angle. 94
4-33: Mach Numbar Plot for Boxwing at 8 Degree Declage Angle 95
4-34: Mach Number Plot for Boxwing at 12 Degree Decalage Angle 96
4-35: Coefficient of Lift vs Angle of Attack 97
4-36: Coefficient of Drag vs Angle of Attack 98
4-37: Coefficient of Drag vs Coefficient of Lift 99
4-38: Coefficient of Lift to Drag vs Coefficient of Lift. 100
4-39: Elapsed Time and Speed Data with Different Wing Configurations 102
4-40: Elapsed Time and Speed Data with Different Wing Configurations 103
4-41: Model Power Input Curves to look at Horsepower Effects. 104
4-42: Power Curve Input Effects on Elapsed Time and Top Speed 105

NOMENCLATURE

CFD	Computational Fluid Dynamics
NHRA	National Hot Rod Association
A	Aerodynamic reference area-projected frontal area of the vehicle
AR	Aspect Ratio
$\mathrm{C}_{\text {D }}$	Coefficient of drag
C_{L}	Coefficient of lift
$\mathrm{D}_{\text {free }}$	Free diameter of the tire, unrestrained, inches
F_{v}	Vertical tread force, lbf, impact momentum
L.E.	Leading Edge
$\mathrm{M}_{\mathrm{grd}}$	Mass of tread, $l b_{m} / \mathrm{g}, \mathrm{W} / \mathrm{g}$
$\dot{M}_{g r d}$	Mass rate of tread, $l b_{m} / \mathrm{g} \cdot \mathrm{sec}$
N_{i}	Rear axle input speed, RPM
N_{r}	Real axle speed, RPM, $N_{i} / 3.2$
P	Specific effective power
Re	Reynolds number
RPM	Revolutions per minute
S	Wing area
SR	Slip Ratio

b
$\Lambda, \Delta \quad$ Fraction of lift on driving wheels including weight transfer effect

Distance to vehicles cg from the front wheels
Wing span
Chord length of an airfoil
Distance from the vehicle cg to vehicles center of pressure
Acceleration due to gravity
Height of endplate
Mass of the vehicle

Horizontal distance traveled
Longitudinal velocity
Longitudinal acceleration

Aerodynamic radius, $s_{L}=\frac{m}{\frac{1}{2} \rho A C_{L}}$

Traction coefficient
Vehicle driving efficiency

Fraction of weight on driving wheels including weight transfer effect

Air density

CHAPTER 1

1. INTRODUCTION

1.1 Background

The dynamics of a Top-Fuel Dragster Car, depicted in Figure 1-1, are quite complicated to model and pose problems for many research areas of interest. The TopFuel Dragster is the fastest of drag racing vehicles. It accelerates at almost 4 longitudinal g's completing a quarter mile run in less than five seconds. It reaches over 100 mph in less than a second and finishes the run with speeds in excess of 320 mph . They are powered by a supercharged engine that puts out over 6000 horsepower and the massive tires spin at almost 8000 rpm . For a single run these dragsters consume more than 5 gallons of nitro methane fuel. The vehicles weight is around 2150 pounds, including the driver, giving it a phenomenal power to weight ratio that puts it in a class like no other.

Figure 1-1: Schematic of a top-fuel dragster

Lift and drag are very important factors for this type of racing event. Many components are responsible for creating this lift and drag but only a couple greatly affect the dragsters performance. These components include the body, rear wheel dynamics, and the rear wing.

The performance of the enormous rear tires, 36.0 " $\mathrm{x} 17.0^{\prime \prime}-16$'s, add to the complexity of the problem. During the run the tires stretch and deform due to a large engine torque of around 4500 ft -lbs as well as the rotational inertial of the tire tread. Normal operating pressure is 4 psig to 5 psig creating a tire footprint of over 250 square inches at the start of the run. The tire constantly changes in size and can expand adding an additional 4.5 inches to the diameter during a run. The rotational inertia of the tire delivers a down force to the car. On the other hand, the flow over the wheels has a great affect on the performance of the car because it results in a positive lift at the rear axle.

The rear wing is used to increase the amount of down force to the rear tires. Increasing this down force increases the normal force between the tire and track surface, which theoretically should increase the potential to use the engine power to accelerate the dragster. If there is little normal force then there is potential for the car to experience wheel slip and thus not have traction to accelerate.

The reason every top fuel dragster team doesn't make a rear wing that has an enormous amount of down force is the fact that when lift is generated so is drag. This drag is referred to as induced drag and is a function of the square of the velocity. This increase in drag therefore takes more horsepower away from the acceleration horsepower and results in a reduced maximum speed that can be achieved during the run. The
question is therefore how much down force is needed and at what time during the run is the maximum amount of down force critical?

1.2 Research Objective

The emphasis of the present work is two fold. First is to develop an accurate dynamic model for a quarter mile run of a top-fuel dragster. The model will be as complete as possible accounting for the significant forces encountered on the vehicle. The performance of the vehicle will be determined by the elapsed time and final speed.

The second portion of this work will be to study the effects that the aerodynamic characteristics of a dragster and rear wing have on the performance of the dragster using the model. From this data an alternative wing will be designed and analyzed. This data will be entered into the model and compared to the current style of wings being used.

Most emphasis has gone into improving the rear wing characteristics but this will not necessarily improve the performance of the dragster. The dynamic solver will be used to determine if the new wing will improve the performance of the overall vehicle. Therefore the focus will be in improving the performance of the car and not just focus on improving the rear wing characteristics. A computational fluid dynamic (CFD) solver will be used to analyze the wing characteristics and this information will be used in the dynamic dragster model.

CHAPTER 2

2. LITERATURE REVIEW

This literature review covers several aspects of a dragster. First two dynamic models will be discussed in detail and one will be modified and used for the current research. Second the dynamics of the tires will be discussed to find out more about modeling the tire dynamically and all the modeling problems that it might pose. The other part of the tire research review will be on the aerodynamics of the tires since they are large and rotate at high rpm. To end the chapter other aerodynamic studies will be done for different wing designs talking about the general style of dragster wing used now and the rules limiting the wings.

2.1 Dynamics of Vehicles

It is good to first look at the interaction between the vehicles aerodynamic characteristics and wheel dynamics and see how they affect the overall vehicle performance. Better and improved vehicle performance is what is truly desired and not just the improvement of the components. Granted the improvements in components can lead to better vehicle performance but how much and at what time during the run is the question. The dynamics of the vehicles and how it is affected by the dynamics and
aerodynamics of the tires, the aerodynamic surfaces, and the aerodynamics of the vehicle's body is what is looked at next.

2.1.1 Tire Tread Momentum Theory

Because Top-Fuel Dragsters accelerate at over 4 longitudinal g's for several seconds this means that there is an effective tire friction factor of over 4 [Hallum, 1994]. This is not possible and therefore Hallum offers a theory on his tread momentum principle.

Figure 2-1: Drag Tire Schematic

A schematic of a dragster tire is depicted in Figure 2-1 above. In this schematic the tire contact angles, tread radius, tread sidewall twisting-straightening, and rotational angles are all shown. Hallum states that the normal force applied to the ground under the compressed area is about equal to the rate of change of vertical tread momentum at the contact. This force, for one tire is given by equation (2-1).

$$
\begin{equation*}
F_{v}=\dot{M}_{g r d} \cdot V_{g r d} \cdot \sin \theta \tag{2-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \dot{M}_{g r d}=\cdot M_{g r d}\left(\frac{N_{r} \cdot R P M}{60}\right) \\
& V_{g r d}=\pi \cdot\left(\frac{D_{\text {free }}}{12}\right)\left(\frac{N_{r}}{60}\right)
\end{aligned}
$$

For this method there are three initial inputs into the system, which are start line ride height (16.5 inches), rear axle RPM at initiation (0 RPM), ground velocity ($0 \mathrm{ft} / \mathrm{sec}$), and acceleration due to rear static weight times the tire friction. The rear axle RPM and ground velocity are from real data but it would seem that the ground velocity would be something that should be calculated. The ride height was assumed and a constant friction factor was used. The output is the tread horizontal momentum change and the acceleration of the dragster.

This model did not give a whole lot of information as to how it works and proved difficult to use when trying to implement. Therefore a different model was sought and discovered that would prove more beneficial to the current research effort.

2.1.2 Critical Speed Model

A different model was proposed by [Hawks and Sayre, 1973] in which they study the optimum straight-line performance of an automobile. They introduce the equations of motion for a straight-line acceleration including both the aerodynamic lift and pitching moment. Their results concluded that aerodynamic down force can improve performance
if the acceleration is limited by traction and that aerodynamic lift is beneficial when power is the limiting factor.

Most of the trends in those days, when considering high-performance automobile design, was to place emphasis on producing down force for the purpose of improving cornering speeds. It was thought that these aerodynamic devices that were being used degraded straight-line performance due to the drag but then it would be made up in the cornering.

Hawks and Sayre found that, in certain circumstances, the straight-line performance improved along with the cornering speed due to the introduction of these aerodynamic down force generating devices. There studies looked at the performance of three vehicles - an AA/FD Competition Fuel Dragster, a Ford Galaxie sedan, and the Lola T-140 Formula A car with several different aerodynamic devices.

It was found that below a certain speed, referred to as the critical speed, the vehicle can spin its wheels. This force corresponds to the friction coefficient multiplied by the normal force on the tires. When there are aerodynamic forces acting on the vehicle then the force becomes a function of the vehicles speed squared. This increase in down force comes with the penalty of increased drag due to the induced drag of the aerodynamic surfaces as discussed previously. If the increase in driving force is greater than the increase in drag then an improvement in performance will result.

Some of the assumptions that were made for this model include a rigid body in rectilinear motion; the automobile is driven through one pair of wheels; acting on the automobile are the driving force, the rolling resistance, the aerodynamic forces of lift and drag, and the aerodynamic pitching moment; and there is an ideal transmission. It was
also assumed that below the critical speed, wheel spin is impending and the driving force is dependent on the product of the friction coefficient and the normal force on the driving wheel. Above this critical speed the driving force is proportional to the maximum power and inversely proportional to the speed. The rolling resistance is assumed to be constant for simplicity.

Figure 2-2: Schematic of an AA/FD Dragster with Forces [Hawks and Sayre, 1973]

When looking at the model in a more detailed manner the schematic of an AA/FD Dragster and the forces acting upon it should be used and is depicted in Figure 2-2 Using the vertical force equation and the moment equation to find the normal loads on the tires, the equation of motion in the longitudinal direction can be derived. The longitudinal acceleration for a speed that is less than the critical speed is shown in equation (2-2).

$$
\begin{equation*}
\ddot{s}=[\gamma \lambda-\mu] g-\frac{1}{2} \frac{\rho A}{m}\left[C_{D}+(\gamma \Lambda-\mu) C_{L}\right] \dot{s}^{2} \tag{2-2}
\end{equation*}
$$

Equation (2-3) is the acceleration where the speed is greater than the critical speed.

$$
\begin{equation*}
\ddot{s}=\frac{\eta \mathrm{P}}{m \dot{s}}-\mu g-\frac{1}{2} \frac{\rho A}{m}\left[C_{D}+\mu C_{L}\right] \dot{s}^{2} \tag{2-3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda=\frac{a}{1-h \gamma} \\
& \Lambda=\frac{a-d}{1-h \gamma}
\end{aligned}
$$

Since the critical speed is the speed at which the traction-limited driving force equals the power-limited driving force it can be found by equating (2-2) and (2-3) The resulting equation is a cubic equation in critical speed where the critical speed is the smaller positive root of equation (2-4).

$$
\begin{equation*}
\dot{s}^{3}-\frac{\lambda g}{\Lambda} s_{L} \dot{s}+\frac{\mathrm{P} s_{L}}{m \Lambda \gamma}=0 \tag{2-4}
\end{equation*}
$$

where s_{L} is the aerodynamic radius and is given by

$$
s_{L}=\frac{m}{\frac{1}{2} \rho A C_{L}}
$$

For the current research effort the critical speed model will be modified and used in order to look at particular components of the dragster and how they affect the performance. Actual parameters will be used when known but other parameters will be estimated to develop a good model. This model will be validated using top-fuel dragster data. Further research will be done to show patterns of the affects that changing the aerodynamic characteristics have on the performance. The model will also be used to
look at a current wing used and see what types of changes can be made to it, if any, that will help lower the elapsed time and increase top speed.

2.2 Characteristics and Dynamics of Rotating Wheels

The tire is one of the most important considerations of the racecar because it is the linkage between the vehicle and the racing surface. There are many studies on the dynamics of tires and the various things that affect the performance of the tire. The bulk of the studies in this area have been for passenger cars but some of this can be used for the current research. There will also be some discussion of the dynamics and aerodynamics of various parts of the vehicle. After talking about passenger car tires and the dynamics and aerodynamics, a section dealing with just top-fuel dragster tires will be discussed.

2.2.1 Dynamics of Tires

The main bulk of the material for the dynamics of tires deals with lateral forces or cornering forces. The research done in this field is for passenger tires and deals mainly with trying to model a tire for passenger cars. For example several researchers look at tire interaction with different surface terrain, how things differ when there is an uneven vehicle, how the effects of braking and cornering affect traction, the effects of wheel orientation, temperature and pressure variations, and various combinations of each.

Figure 2-3: Schematic of the Contact Patch

The concern for the current research is that for straight-line acceleration where it deals with the longitudinal forces. When accelerating there are longitudinal forces between the tire and the ground that arise in an area referred to as the tire footprint as can be seen in Figure 2-3. The longitudinal forces have similarities to the lateral or cornering forces inasmuch as there is an elastic distortion region, referred to as longitudinal stretching, and a sliding or frictional region [Milliken and Milliken, 1995]. In addition to these longitudinal forces there are other important forces that arise that come from the aerodynamics of the tires.

2.2.2 Tire Aerodynamic Studies

Tire aerodynamics are not the main focus of this work but for modeling purposes it is necessary to understand some of the characteristics of the tires when developing an
accurate dynamic model. Wheel aerodynamics is a topic that is not fully understood. The information that is generated is based upon research done for the automotive industry. A lot of time has been put into experimental wind tunnel setups where the concern becomes ground interference. Once placed in the wind tunnel, a tire setup can consist of several things:

1. The tire can be stationary (not allowed to rotate) varying the gap distance between the floor and the bottom of the tire.
2. It can be powered by a motor and vary the gap between the floor and the bottom of the tire.
3. The wind tunnel has a movable floor and the wheel is powered by a motor and placed on the moving floor.

All these tests in the wind tunnel are used to try to match existing tire aerodynamic data. It might not be possible to have the ideal setup in the wind tunnel because they might not have a moving floor, they might not be able to power the wheel, etc. The ideal setup would be to have a wind tunnel vehicle that is able to rotate the wheels at their appropriate speeds with zero ground clearance.

Studies have been done looking at the first setup where the tire is stationary and the gap is varied. It was shown by using wool tufts around the wheels that for the stationary wheels the difference between a sealed and unsealed ground clearance was almost imperceptible [Stapleford and Carr, 1970]. It was stated that the boundary layer effect restricted the flow of air under the wheels when the gap was opened. But when the wheels were rotating, as in the second setup mentioned above, an additional airflow was induced through these gaps and the flow pattern had changed considerably. The principal
effect of the rotation was an asymmetric pressure distribution causing a large negative lift to be generated in accordance with the Magnus effect, which is discussed next.

For inviscid flow past a cylinder has a symmetric flow pattern and by symmetry the lift and drag are zero. But for a rotating cylinder it will drag some of the fluid around producing circulation. This in effect causes the flow to be asymmetric and the average pressure is greater on the upper half of the cylinder than on the lower half of the cylinder causing lift to be generated. This is known as the Magnus effect and is pictured in Figure 2-4. This figure was provided by [Munson, Young, and Okiishi, 1994].

In the figure, the first picture (a) is of a uniform upstream flow past a cylinder without circulation. The second picture (b) is a free vortex at the center of the cylinder while the last picture (c) is the combination of the free vortex and uniform flow past a cylinder. This combination gives nonsymmetrical flow and thus produces lift.

Figure 2-4: Schematic of Magnus Effects

Further explanation is given by [Katz, 1995] where he talks about and shows the difference in separation points for a rotating and non-rotating wheel in a wind tunnel. As seen in Figure 2-5 the separation point on the rotating wheel (left) occurs much sooner
than the separation point on the stationary wheel (right). This figure was provided by [Katz, 1995].

Figure 2-5: Experimental Study of Flow Past a Stationary and Rotating Wheel [Katz, 1995]

This early separation for the rotating wheel can be explained by studying Figure 2-6 which was provided by [Milliken and Milliken, 1995]. For the stationary wheels the suction pressure is greater on the top of the wheels and thus causes a greater positive lift upwards. When the rotation is introduced the separation point is further upstream reducing the suction pressure and thus reducing this positive lift. The figure below is from wind tunnel tests and the rotating wheel had an effective "zero" ground clearance while the stationary wheel had a 0.25 inch ground clearance [Stapleford and Carr, 1969].

Figure 2-6: Pressure Distribution Around the Wheels of a Vehicle

Another thing that greatly affects the characteristics of tire performance is Reynolds number. A little bit of information was provided by [Cogotti, 1983] about the effects of Reynolds number. He also provides his tire data along with the corresponding critical Reynolds number, which is based upon the turbulence and surface roughness. This critical Reynolds number greatly affects the drag coefficient.

When looking at the Re number effects on a smooth cylinder, as seen in Figure 2-7 the coefficient of drag is greatly affected. The figure below is not used for any data in this work but it is merely to show how great Re number effects can be on an object similar to the dragster tire. The figure was provided by [Munson, Young, Okiishi, 1994]. The calculated Re number for the top-fuel dragster tire at a top speed of 330 mph , based upon its diameter, is 9.25×10^{6}.

Figure 2-7: Reynolds Number Effects on the Coefficient of Drag [Munson, Young, Okiishi, 1994]

The letters in the previous figure correspond to flow patterns in Figure 2-8, below. The wheel would see a similar flow pattern as it speeds up but in this case there is no ground effects present and the cylinder is not spinning so the flow pattern is for visual purposes only. This helps show the different flows that are encountered during the dragsters run which make the analysis that much more difficult.

Figure 2-8: Flow Pattern Around a Smooth Cylinder at Various Re Number

One thing in common with all of these papers is that they all seem to come to the conclusion that wheel aerodynamics are very difficult to measure experimentally and their full interaction with the rest of the vehicle is still in a state of confusion. This was
mainly for passenger type tires without the added complications of the top-fuel dragster tire where the high torque, low pressure, high speeds, and large tire deformations add to the complexity of the problem.

2.2.3 Top-Fuel Dragster Tires

As mentioned before the top-fuel dragster has enormous rear tires, $36.0^{\prime \prime} \times 17.0^{\prime \prime}-$ 16's as seen in Figure 2-9 The side walls of the 36-inch diameter tire are very flexible and weighs around 47 pounds. The main tread of the tire comes in at a weight of around 30 pounds for its 17 -inch width.

Figure 2-9: Static View of a Top-Fuel Dragster Tire

With a large engine torque of around 4500 ft -lbs coupled with the normal operating tire pressure of 4 psig to 5 psig gives way to the large 4.5 inches of diameter expansion that the tire sees. In Figure 2-10 there is a static picture before a burnout as well as a picture of the same vehicle during the burnout. The tire has changed shape dramatically both in the width and the diameter of the tire.

Figure 2-10: Tire Expansion on Top-Fuel Dragster Burnout

The tire footprint is over 250 square inches at the start of the run. With the wheels spinning at almost 8000 rpm the rotational inertia of the tire can deliver an enormous amount of down force to the car. When viewed in slow motion at the start of the run the tremendous torque is applied and the tire is balled up at the front of the contact patch as seen in Figure 2-11 The dragster squats and the weight transfers to the rear tires. The wheel rim spins at a faster rate than the rest of the tire causing the sidewalls to wrinkle up at the bottom. Once the tread reaches the rear part of the contact patch it speeds up to catch up with the rest of the wheel rim. This momentum causes great forces that are responsible for the incredible acceleration according to [Hallum, 1994].

Figure 2-11: Top-Fuel Dragster Tire at the Start of a Run

The deformation and wrinkling of the tire due to the large amount of torque applied can be seen above. At the bottom of the tire is the word "Goodyear" and due to the wrinkles in the sidewall it is not entirely visible.

The other perspective of the top-fuel dragster tire is the aerodynamics involved. The flow over the wheel has a great affect on the performance of the car because it results in a positive lift at the rear axle as mentioned before. The flow over a stationary semicircle can be used as an example for this lift effect. Starting out with the basic lift equation, the lift on a stationary semicircle shape was derived in [Munson, Young, Okiishi, 1994] to be the following:

$$
\begin{equation*}
L=\left(0.88+\frac{1.96}{\sqrt{\mathrm{Re}}}\right)\left(\frac{1}{2} \rho U^{2} A\right) \tag{2-5}
\end{equation*}
$$

It can be seen that lift is created when there is flow over a semicircle. This is not what is used for determining the lift over that wheels because it is not accurate for a 3D cylinder that is rotating. This is just used to show that there is lift produced due to the flow over the rear wheels and that as the speed increases the lift force becomes greater.

2.3 Wing Design

To keep these rear wheels in contact with the race surface aerodynamic surfaces are used. There are two wings, the front and rear, on a top-fuel dragster car, which help the performance in different ways. The primary purpose of the front wing is to keep the vehicle from pitching up in the front and flipping over. Since the rear wing is mounted as far aft as possible, there is a tendency for the front wheels to be lifted off of the track. The counteracting balance comes from the negative lift produced by the front wing. The required down force of the front wing is enough to keep the overall vehicle from flipping over and provide enough pressure to the front wheels so that the driver has control over the steering. The rear wing is more of the focus of this research.

2.3.1 Multi-element Wings

Sometimes when designing a wing it is desired to produce more down force. Different methods used to obtain more down force are increasing the wing area, increase the camber of the airfoil, and delay flow separation by slotted flap design or multielements [Katz, 1995]. Since the wing area is fixed by the NHRA regulations, which will be presented in detail in the next section, then the alternative is to use wings with multielements.

Experimental studies on multi-element wings proved that larger lift coefficients could be obtained. These experiments were first performed by Handley Page and the results can be seen in Figure 2-12. This figure was provided by [Smith, 1975]. The
airfoil was a RAF 19 and they are separated by a number of slots. The numbers represent the number of slots with a two-element airfoil having one slot, a three-element airfoil having two slots, and so on. It can be seen that higher angles of attacks can be reached and the coefficient of lift can reach as much as 4.

Figure 2-12: Effects of Multiple Elements on the Coefficient of Lift [Smith, 1975]

These slots allow high pressure air from the bottom side of the wing to exit through the gap and flow over the top of the next element. This will tend to reduce the separation while increasing lift and reducing drag.

2.3.2 Limitations on Rear Wing Design for Top-Fuel Dragsters

Since Top-Fuel Dragsters compete in sanctioned races, the governing body or the National Hot Rod Association (NHRA), has instilled rules and regulations that must be met. According to the NHRA 2000 Rulebook the rear wing is limited in type, size, and position. The wing must be locked into place as to prevent adjustment of any part of the wing during the run. The combined total area of all wings, canards, and airfoils mounted behind the front spindle can be no more than 1500 square inches. The position of the rear wing is limited by it height and aft placement. The trailing edge may not extend more than 50 inches behind the centerline of the rear axle and the height of any part of the wing may not exceed 90 inches measured vertically from the ground.

2.3.3 Typical Top-Fuel Dragster Wings

A typical rear wing design for a top-fuel dragster is a three-element wing with endplates. The material has been aluminum but with the advances in composites most are made of carbon fiber and Kevlar for the outer skins as well as the endplates.

Typical rear wings have an aspect ratio of around 2.4. The aspect ratio of a wing is defined by equation 2-6 as being the ratio of the span of the wing squared to the area of the wing.

$$
\begin{equation*}
A R=\frac{b^{2}}{S} \tag{2-6}
\end{equation*}
$$

The higher the aspect ratio the better the performance of the wing. When a wing is generating lift, it has a reduced pressure on the upper surface and an increased pressure on the lower surface. The air wants to get to the lower pressure and thus flows over the tip of the wing. This escaping air reduces the pressure difference near the tip of the wing and thus reduces the lift near the tip. For a wing with the same area this effect is greater for lower aspect ratio wings because the span of the wing is less than that of a high aspect ratio wing. For the high aspect ratio wing the pressure difference at the tip is less significant because it affects a smaller portion of the overall wing. This is why the higher the aspect ratio the better the performance characteristics.

To increase this aspect ratio means increasing the span of the wing or decrease the area of the wing. Increasing the span of the wing can only be done to a certain limit constrained by the width of the dragster. It can be extended past the width of the vehicle but during the race if any part of the dragster crosses the middle dividing line on the drag strip then that dragster is disqualified. This is the main reason that the span of the wing is kept at or below the width of the vehicle.

The effects of increasing this wing span were presented by [Winn, Kohlman, Kenner, 1999] which showed improvement as expected but increasing the span is not desirable as discussed earlier. They show increasing the span of the wing by 3 feet. This is great from an aerodynamic perspective but when it is looked at from the perspective of the race team or the driver it would add one more complication to the race. The driver would have to worry about staying that much further away from the center line.

In an attempt to increase the performance by decreasing this loss an addition to the wing called an endplate can be used. The endplate, seen in Figure 2-13 and provided by [Katz, 1995], maintains a pressure difference between the upper and lower portion of the wing that not only improves the performance of the wing at the tip and thus improves the overall wing performance. Therefore there is an effective aspect ratio calculation that can be made that is presented by [Raymer, 1992] and is shown in equation 2-7).

$$
\begin{equation*}
A R_{\text {effective }}=A R \cdot\left(1+1.9 \cdot \frac{h}{b}\right) \tag{2-7}
\end{equation*}
$$

Thus by increasing the height to span ratio of the endplate a greater effective aspect ratio can be obtained. The effects of changing the endplate design will be discussed later in another section.

Figure 2-13: Endplate Size Dimensions

2.3.4 Endplate Design

As previously mention the effects of the endplates have proven to provide a more effective wing in the case of the low aspect ratio wing such as the rear wing of a dragster. The endplates on a typical dragster has been shaped based upon a "coolness" factor instead of on an aerodynamic performance factor. CFD analysis was performed on a three-element top-fuel dragster wing to study the aerodynamics involved. After careful analysis it was determined that due to the huge pressure difference between the top and bottom of the wing the flow was spilling over the top of the endplate and would disrupt the flow on the bottom surface of the wing. This reduced the amount of potential down force that the wing could generate. After determining this, adjustments were made to reduce this spillover effect and new endplates were designed and rerun in STARS. Vast improvements were made in the down force to drag ratio.

Although this improvement to the wing design was beneficial to the wings down force to drag ratio it has not been proven that the enormous amount of down force generated is necessary to the overall vehicle performance. This is where the study of the dynamics of the vehicle, which includes the aerodynamics, will be beneficial to the understanding of the overall effect of the dragster rear wing. It is also the intent of the author to show how much these improvements in wing design affects the performance of the vehicle such as the elapsed time and top speed for a quarter mile run.

CHAPTER 3

3. METHODOLOGY

This chapter is broken down into several sections that include the methodology behind the dragster model. The description of the STARS CFD code used and the implementation of a dragster wing into STARS. Also the setup to determine how the endplates effect the rear wing performance will be discussed followed by the development of a new type of dragster wing.

3.1 Modeling the Dragster

Several approaches were explored when trying to come up with a good dragster model. First the equations of motion for the dragster needed to be derived by studying all the forces acting on the vehicle. These included all of the lift and drag properties of the vehicle, the weight and weight transfer, the dimensions of certain parts of the dragster, and the performance of the engine and overall drive train. The lift and drag properties will be explored first building up to the full equations of motion.

3.1.1 Wheel Properties Used

The wheels were one of the more difficult components to get true data for because of the dynamics of these types of tires as discussed earlier. Lift and drag are generated by a number of different ways not just due to the flow around the tire but due to the rotation of the tires as well. In the previous chapter the aerodynamics of a rotating object was discussed. For the lift and drag characteristics of a rotating tire, research done by [Cogotti, 1983] will be used. Wind tunnel tests were done with the tires in direct contact with the balance and the wheel was powered.

C_{d}	0.579
C_{1}	0.18

Table 3-1: Lift and Drag Coefficients for the Tires from Cogotti's Research

Since the model was looking at general trends in aerodynamic effects on dragster performance a complicated tire model was not sought after. The data found on modeling tires was so detailed and was concerned with so many different aspects of the tires that it was decided that a simple tire model will be sufficient. Sure the tire can be analyzed and modeled in greater detail but the current research is concerned with finding general trends for the purpose of analyzing the rear wing and not concerned with advanced tire models.

3.1.2 Rear Wing Properties Used

The rear wing had two different sources of drag - induced drag and area drag. The first portion of drag, induced drag, is provided by the STARS code. This entails entering the dimensions of the object into a computer and using CFD to determine the aerodynamic properties of the object. STARS and implementing the wings into STARS is discussed later in this chapter.

The second type of drag used is area drag. The area drag is estimated by breaking the dragster wing into different components and estimating these different component drags.

The lift component for the wing is determined using STARS. The wetted area of the wing is provided by STARS and the plan form area of the wing is set by the NHRA rules.

3.1.3 Equations of Motion

After all the parameters are determined the next step is to determine the equations of motion for the dragster. The equations of motion are derived by summing the forces on the dragster. There are two regions that determine which equation is going to be used which can be seen in Figure 3-1. The first region is the traction limited acceleration portion of the track. This is where the acceleration power is so great that the wheels would slip if the throttle was held wide open. There is not enough down force to grip the wheels to the ground therefore the driver must ease on the throttle until they reach a point
at which this is no longer a scenario where the wheels can spin. This point is called the critical velocity of the vehicle.

Figure 3-1: Dragster Run Schematic Showing Two Areas

This critical velocity point is the transition between the traction limited acceleration and the power limited acceleration. In the power limited acceleration region there is so much down force that the power used to accelerate the vehicle is not large enough to spin the wheels. In other words, the normal force from the wheels to the ground multiplied by the friction factor of the tires is greater than the force generated by the torque from the engine.

The two different equations of motion are shown below. The first equation of motion, Equation (3-1), is the traction limited acceleration which is valid below the critical velocity. After this critical velocity is reached the second equation of motion can be utilized which is the power limited acceleration shown in Equation (3-2).

For
$\dot{x}<v_{c r}$
$\quad \ddot{x}+\left[\frac{1}{s_{D}}+\frac{\gamma \Lambda-\mu_{r r}}{s_{L}}\right] \dot{x}^{2}-\left[\gamma \lambda-\mu_{r r}\right] g=0$

For
$\dot{x}>v_{c r}$

$$
\begin{equation*}
\ddot{x}-\frac{\mathrm{P}}{m \dot{x}}+\left[\frac{1}{s_{D}}-\frac{\mu_{r r}}{s_{L}}\right] \dot{x}^{2}+\mu_{r r} g=0 \tag{3-2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \lambda=\frac{a}{1-h \gamma} \\
& \Lambda=\frac{a-d}{1-h \gamma}
\end{aligned}
$$

The idea of this model is to use the lift and drag coefficient data along with the other vehicle properties such as the effective input engine power and vehicle dimensions to find the critical velocity of the vehicle. Since the critical speed is the speed at which the traction-limited driving force equals the power-limited driving force it can be found by equating (3-1) and. (3-2) The resulting equation is a cubic equation in critical speed where the critical speed is the smaller positive root of equation 3-3).

$$
\begin{equation*}
\dot{s}^{3}-\frac{\lambda g}{\Lambda} s_{L} \dot{s}+\frac{\mathrm{P} s_{L}}{m \Lambda \gamma}=0 \tag{3-3}
\end{equation*}
$$

where s_{L} is the aerodynamic radius and is given by

$$
s_{L}=\frac{m}{\frac{1}{2} \rho A C_{L}}
$$

After the critical velocity is found the corresponding position and time are calculated using the acceleration from equation (3-1) and simple dynamics. From this point the differential equation for velocity less than the critical velocity can be solved.

Using the critical velocity and position as inputs and the corresponding time as the starting time the second differential equation (3-2) for velocity greater than critical velocity can be solved.

Plotting can be done of position, velocity, and acceleration for the given vehicle data. In the results section this model will be implemented using dragster characteristics and this will be compared to position, velocity, and acceleration from and actual dragster run.

Once the model is established and validated it can be used in a number of ways. First of all trends can be found to see how aerodynamic characteristics will affect the performance of a dragster. Once this is know the second approach will be to use if to come up with a new wing design that will allow the performance of the dragster to improve either by elapsed time, by top speed, or maybe both.

3.2 Validation of the Dragster Model

In order to validate the model it was necessary to match the position, velocity, and acceleration data from an actual dragster run. Speed versus distance and position versus time data was found [Winn and Kohlman, 1999] and used for the validation. In order to get the speed versus time curves the position versus time data had to be differentiated. Double differentiation of the position versus time data was used to compare the acceleration data of the model.

The first validation plot is position versus time which is shown below in Figure 3-2 In this plot the two different regions of analysis, both below and above the critical
velocity, can be seen. The circles are the actual data and the lines are from the model. The model matches the actual data very well.

Figure 3-2: Validation of Position vs Time for a Top-Fuel Dragster (1/4 Mile)

In order to get speed versus time data the data from Figure 3-2 had to be differentiated. This data is represented by the circles in Figure 3-3, below along with the model data depicted by the lines. Once again the model shows the regions where the two different equations of motion were used by plotting a solid line and a dashed line. The speed where these two lines meet is the critical velocity. This data matches up fairly well but a small error can be seen which is due to the differentiation of the data. Once differentiated the error that was there in the position versus time plot is enlarged.

Figure 3-3: Validation of Speed vs Time for a Top-Fuel Dragster (1/4 Mile)

Acceleration data versus time was not readily available and therefore the position versus time data was double differentiated to get the actual data in Figure 3-4 below. The model still matches the trend of the actual data.

Figure 3-4: Validation of Acceleration vs Time for a Top-Fuel Dragster (1/4 Mile)

There was also actual speed versus position data that was used to validate the model. This data is shown in Figure 3-5 with the actual data depicted by circles. Once again the model matches the data very well.

Figure 3-5: Validation of Speed vs Position for a Top-Fuel Dragster (1/4 Mile)

3.3 STARS CFD Module

One of the research tools used for this project is portion of a set of codes developed at NASA Dryden Flight Research Center known as STARS. STARS stands for $\underline{\text { STructural }} \underline{\text { Analysis }} \underline{\text { Routine }} \underline{\mathbf{S}}$, which is a highly integrated computer program for multidisciplinary analysis of flight vehicles including static and dynamic structural analysis, CFD, heat transfer, and aeroservoelasticity [Gupta, 1997]. For the current effort, only the CFD module of the code will be utilized for analyzing the aerodynamic characteristics of the wings.

The CFD module is an Euler based code that applies finite element CFD on an unstructured grid. The mesh generation uses the advancing front technique to generate the unstructured mesh, which had been proven to be effective in complex structures. When implementing the CFD module it is pertinent to follow a set of steps. This module consists of the following four major parts and should be run in the order that they are listed:

- SURFACE - generates a surface triangulation
- VOLUME - generates a three-dimensional computational domain
- SETBND - defines the boundary conditions in the domain
- EULER - steady or unsteady Euler flow solver

The easiest way to explain these different modules is to implement an actual problem into STARS step-by-step. The steps used and the data file structures and contents will be discussed in more detail in the next section. The problem that is being used is the rear dragster wing that has a style 3 endplate. The differences in the wings and endplates will be discussed later.

3.4 Implementing the Dragster Wing into STARS

As mentioned before there are four main modules or steps to follow, in order, before the user gets the solution. The first step in order to analyze the dragster wing in STARS is to setup the geometry data into the format so that STARS can read it. After the geometry is entered a mesh generation is enacted and a refinement in the density of the grid is performed until a suitable mesh is found. The last step before running the flow
solver is to specify the boundary conditions for the geometry and flow domain. The aforementioned modules are discussed in more detail in the following subsections.

3.4.1 Geometry Specifications in STARS

The geometry is made up of curves and surfaces that define the geometry of the dragster wing and the geometry of the flow domain. The geometry data file is a formatted data file that will be referred to as case.sur, were case can be any name that the user specifies. The dragster rear wing geometry file can be found in Appendix A-1.

The lines are oriented in a specific direction, defined in the direction of the arrows in Figure 3-6, according to the way STARS reads in the geometry. The lines are defined by means of an ordered set of points. The curve component is a continuous cubic spline, which is interpolated through these points. The model is a half span model with a symmetry plane. Using this symmetry plane cuts down on the computational time of the job without sacrificing the accuracy of the solution.

Figure 3-6: Wing Geometry Specification

It might be noticed that the numbering in Figure 3-6 starts out at three. The first two numbered lines define the flow domain that surrounds the geometry. The flow domain is a large hemisphere. There are ten chord lengths between the wing geometry and the outer surface of the hemisphere. The flat side of the hemisphere is the symmetry plane and is where the half span model of the rear dragster wing is attached.

After the curves are defined the next step in STARS is to specify the surfaces of the geometry. This is done by specifying each line that makes up the surface in a specific order. There are two possibilities that STARS will see depending on the order that the lines are specified - either a surface or a whole in a surface. When defining the surface the right hand rule must be used. The direction of the lines are important to this step and when using the right hand rule the fingers curl in the direction of the specified lines and
the thumb has to point into the flow. If the thumb points into the geometry then the surface was not specified correctly.

When this is completed the wing looks like Figure 3-7. For the dragster wing that was analyzed, the largest and main element is based upon a set of data points. The chord length of this element is 14.1 inches long. This main element is set at zero angle of attack. The second element is an NACA 9400 type airfoil with a chord length of 5.25 inches. It is set at a 28-degree angle of attack with respect to the chord line of the main element. The third and final element is an NACA 4300 type airfoil with a chord length of 5.25 inches. It is set at a 65 -degree angle of attack with respect to the main element chord line.

The configuration of the wing analyzed was $0^{\circ}-28^{\circ}-65^{\circ}$. The configuration, $0^{\circ}-28^{\circ}-$ 65°, refers to the angle of attack of each of the three individual elements. The wing was adjustable to different configurations but this configuration was the one most commonly used and therefore was the configuration that was used in the analysis.

Figure 3-7: Rendered View of a Half-Span model with a Style 3 Endplate

3.4.2 Grid Specifications in STARS

Once the geometry is defined a mesh density must be specified in the (.bac) file, which is listed in Appendix A-2. The mesh density must be small enough on the geometry in order for the solution to be accurate. The half model of the wing can be seen in Figure 3-8 The symmetry plane, where the half span model is attached, has a larger triangular mesh than the wing surface. This allows the solution to converge faster because the amount of calculations that the code has to go through is greatly reduced.

Figure 3-8: Half Model of Dragster Rear Wing Mesh Density

The density of the mesh can be specified in a number of ways. In the (.bac) file the user can specify any number of sources in order to get the specified mesh density. The user can chose from three types of sources being a point source, a line source, or a triangle source.

A point source allows for a sphere like mesh density that can change the size of mesh to start out with, how large of a sphere, and how far out until the mesh size is double of the original starting size. Point sources can be used on the front of an airplane body, such as the nose of the X-29 experimental aircraft, in order to make the geometry mesh tighter.

The line source differs from a point source in that it is cylinder like and there is a specified length instead of a sphere. The line sources are typically used in the leading and trailing edges of a wing because of the sharp transition in geometry.

The triangle source is a mesh density in the shape of a three dimensional triangle. They can be used in a number of ways for a number of different situations. In the dragster wing case two triangle sources are used per wing in a way as to make a rectangle running thru the chord of the wing to refine the mesh on the surface of the wings. They are also used on the endplates since the endplate is so thin it allowed for a refined mesh so that the solution around the endplate is accurate.

3.4.2.1 SURFACE Module

After generating the geometry data file and the background mesh data file the first step is to run the SURFACE module. The SURFACE module generates a couple of data files. The first is a (.RST) file, where the.$R S T$ is just the suffix that is added to the problem name, e.g. fin.RST or wing.RST. This file is an auxiliary file in which all of the information about the generation processed is dumped. This allows the user to re-start the SURFACE module if the program is stopped before completion.

The second file generated is a (.fro) file that stores the information about the triangulation of the surface in the three-dimensional and the parametric space. This file is used for input to the VOLUME and SETBND modules, which will be discussed later. The (.fro) file is not listed in the appendix because it takes up 1060 pages of numbers in 10 point font and the information is not pertinent to developing a model in STARS.

3.4.2.2 VOLUME Module

The VOLUME module only requires two files to run - the background mesh file (.bac) and the surface triangulation file (.fro), that was generated from the SURFACE module. The Volume module outputs a restart file (. $R V T$) and a tetrahedral mesh file (.gri). The restart file (.RVT) can be read by the VOLUME module in case the program was interrupted or unable to finish. It is similar to the restart file of the SURFACE module. The (.gri) file holds the description of the tetrahedral mesh. This is one of the input files to the SETBND module. The (.gri) file is extremely large, over 7200 pages of numbers in 10 point font, and therefore is not listed in the appendix.

3.4.3 Boundary Condition Specification in STARS

After running the SURFACE and VOLUME modules, it is now time to look at the boundary conditions. The boundary condition specifications, (.bco) in STARS, is pretty straightforward and can be found in Appendix A-3. The user is required to flag the curve segments and surface regions in a formatted data form. The surface region flags define the type of boundary conditions to be applied to a certain surface and are defined in Table

3-2. If the surface was a symmetry plane then that surface would be flagged with a 2 as indicated in the table.

Flag	Surface Type
1	Wall
2	Symmetry
$3-4$	Far Field
$5-6$	Engine Inlet
$7-8$	Engine Outlet

Table 3-2: Surface Region Flags

The user must also specify the curve segment flags. These identify points in the triangulation, which lie on the surface regions, where the normal to the surface is not defined. These are singular points in the geometry and at these points there is no wall boundary corrections applied. Such points include the trailing edges of wings or any similar geometry. The flags for the curve segments can be found in Table 3-3.

Flag	Singularity
0	No Singularity
1	All are Singular
2	Singular Point at First and Last
3	Singular Point at First Only
4	Singular Point at Last Only

Table 3-3: Curve Segment Flags

3.4.3.1 SETBND Module

After the boundary conditions are specified, the third module can be run. This is the SETBND module, which is the flow solver preprocessor. It transforms the elementbased description of the tetrahedral mesh into the side-based data structure employed by the EULER module. The SETBND module requires the surface triangulation file (.fro), the tetrahedral mesh file (.gri), and the boundary conditions file (.bco).

The output to the SETBND module is a file that contains the combination of both the surface triangulation file (.fro) and the tetrahedral mesh file (.gri) into a single file referred to as the (.plt) file. This file can then be used for another module that is sometimes used, which is the REMESH module. The (.plt) file is a binary file and is not listed in the appendix.

The REMESH file is not discussed as one of the main modules because it is not necessary to run this module in order to obtain a solution. The REMESH module looks at the concentration of flow activity and can refine the mesh density in this area in order to acquire a more accurate solution.

The other output file from the SETBND module is the solver data file (.geo). This file contains the side-based data structure representing the computational mesh and all the information required by the flow solver. The (.geo) file is another large data file that is binary and is not listed in the appendix.

3.4.4 Solver Control Specifications

This solver control file (.cons) contains a set of flow conditions and algorithmic constants for the Euler flow solver and a sample can be found in Appendix A-4. The flow solver contains built-in defaults that can be overwritten by the user if another value is specified in the solver control file. This is where the the free-stream Mach number, the angle of attack, side slip angle, as well as fluid properties must be specified. Other algorithmic properties include the number of timesteps, dissipation coefficients, CFL number, and residual smoothing parameters to name a few.

3.4.4.1 EULER Module

Now that the control specification file is generated and all three previous modules had be run then the last module can be started. The solver module or the EULER module is the unstructured Euler flow solver which performs numerical computation of the steady-state solutions of the transient form of the Euler equations of compressible inviscid flow.

The SOLVE module needs both the solver data file (.geo) and the solver control file (.cons) in order to run. The module outputs nodal values of flow variables (density, velocity, and pressure) in a (.unk) file. The EULER module also outputs another file that contains the history of the convergence of the L-2 norm of the residuals of the conserved variables in a (.rsd) file. This can be used as a convergence criterion that will be discussed in a later chapter. Once the EULER module has run and the solution has converged, the CFD portion of the STARS code has been completed.

The final step would be to view the solution with a postprocessor where a variation of figures and graphs both two- and three-dimensional can be generated. Several of these figures are shown in the results section of this paper.

3.5 The Effects that Endplates have on Rear Wing Performance

CFD was used to analyze the flow over an existing top-fuel dragster wing both with and without an endplate. This wing geometry, that was discussed in the previous section was used for each of the three test cases analyzed. Therefore, the three wings vary only in the endplate design as can be seen in Figure 3-9 below. The first case was to study of the dragster wing without an endplate. The second case used one endplate design that was currently being used on a dragster wing built by Advanced Racing Composites (ARC). This will be referred to as a style 3 endplate. The third and final wing used an endplate that tried to improve the performance characteristics of the wing by changing just the geometry of the endplate. This endplate is referred to as the new endplate.

Figure 3-9: Three Different Endplate Geometry Analyzed

The CFD analysis was run to depict a race at the top design speed at the highest racing altitude. This meant using a Mach number of 0.434 , which corresponded to a design velocity of 325 mph at an altitude of 5500 feet (Denver, CO).

The CFD solver starts out at the given free-stream Mach number and after converging gives a resulting flow-field on the wing. Therefore, it is necessary to determine when the solution converges. STARS can output flow parameter residuals (.rsd) file and maximum Mach numbers for every time step. The steady-state solution convergence criteria for maximum Mach number was used instead of the residuals of flow parameters. It was determined that the maximum Mach number is a much better convergence indicator than the flow parameter residuals [Stephens, 1998].

Since the input files for the STARS modules can be long and detailed, when changing geometry, a spreadsheet was used to create the geometry and background mesh data files. The spreadsheet was set up to allow many different parameters to be changed. Changes could be made to the span of the wing, the angle of attack of each of the airfoils, the gap spacing in between each of the wing elements, the position of the wing inside the flow domain, as well as the type of endplate to be use. This spread sheet saved a lot of time in the generation of the input data files.

3.6 Box Wing Design

After analyzing the dragster model and looking at the trends to improve performance some thought went into a different rear wing design. A simpler design that was made of less components would be a plus but most important improved dragster performance was sought.

Previous work had been done with a high-lift low Reynolds number airfoil that showed some potential for this type of project. The airfoil is a Selig 1223 that was found at the University of Illinois at Urbana-Champaign airfoil data website. It was decided that the approach would be to use this airfoil with a boxwing type design instead of the typical three-element design that is seen today on top-fuel dragsters. The boxwing type design will be talked about later on in this section.

The Selig 1223 airfoil, as seen in Figure 3-10, has a large coefficient of lift. This airfoil was designed to be a heavy lifting airfoil. The airfoil data points can be found in Appendix C-1.

Figure 3-10: Selig 1223 Airfoil

This airfoil has a very thin trailing edge as can be seen in the figure above, This requires some knowledge of manufacturing as well as the materials that will be used to built the wing. With materials like carbon fiber, which is one of the currently used
materials for dragster wings, this airfoil is not a problem. Because the wing's thin trailing edge you need a material that is strong so that it would not break off. Carbon fiber could be used to make this trailing edge strong enough.

Figure 3-11: Effect of the Number of Elements on an F-1 Type Wing [Katz, 1995]

Next the effect of the wing was considered using simple back of the envelope calculations. It was thought that a single wing with the Selig 1223 airfoil did not produce adequate lift. Therefore a boxwing design seemed more appropriate. Looking at Figure 3-11. provided by [Katz, 1995], it can be shown that the number of elements should not
exceed 2. The figure shows that as the number of elements increase so does the coefficient of lift or down force. The other plot in the figure is the ratio of down force to drag and as the number of elements increases this down force to drag ratio decreases. This means that with more elements the wing is producing more drag. These two curves meet in between two and three elements showing that, for this application where drag matters, two elements is ideal.

The final wing design consisted of one chord length separation between the wings both horizontally and vertically. When looking at Figure 3-12 the vertical separation refers to distance h where the wing would be moved one chord length. The horizontal separation refers to the distance x and is one chord length as well.

Figure 3-12: Decalage Angle

The two wings are identical in chord and span which would cut down building time because only one type of wing would be needed. This would eliminate the production of three different types of wings as is the case for the currently used multi-element wings. The wings are set at a different angle of attack which changes the performance
characteristics of the wings. The difference in the angle of attach between the top wing and the bottom wing is known as decalage angle. When looking at Figure 3-12 above, the decalage angle will be the difference between $\alpha 1$ and $\alpha 2$. If the bottom airfoil was set at 5° angle of attack and the top airfoil was set at 15° then the decalage angle would be the difference in the two or 10°.

A study was done to look at the effect that decalage angle has on the performance characteristics of the wing. Therefore three decalage angles were tested computationally, using STARS, and the angles were set at $0^{\circ}, 8^{\circ}$, and 12°. Further computation was done by varying the overall angle of attack of the whole boxwing starting at 0° and ranging up to, in some instances, 25°. A half model of the boxwing design is pictured below in Figure 3-13

Figure 3-13: Rendered View of half model Boxwing with a 12° Decalage Angle

No studies were done on the shape of the boxwing endplates. Therefore a simple square endplate was used for the computational analysis. This will be talked about further in the results section.

Since a lot of variations to the wing were going to be performed it was beneficial to make a spreadsheet that would produce the STARS input data file after the wing parameters were changed. The spreadsheet allowed for each angle of attack of the two wings, the endplate dimensions both vertically and horizontally, the chord of the airfoil, the length of the wing, as well as the position of the wing in the flow domain all to be changed. This saved a lot of time between data runs.

CHAPTER 4

4. RESULTS

This chapter is broken down into several sections including the results of the endplate effects on the performance characteristics of the wing, the gap spacing comparisons for a multi-element wing, and angle of attach comparisons between wings. The results of the boxwing design will also be addressed. Finally the dynamic model comparisons of a dragster run with be shown and discussed. This section will look at various wings used and show how each affected the performance of the dragster.

4.1 Effects of Endplate on Three-Element Dragster Wings

The effects of endplates section explores several ways that endplates can effect wing performance by studying a three-element wing without an endplate as well as two different endplate designs. This section is broken down into several subsections including pressure contours, cross flow velocities, velocities at the tip of the wings, down force to drag ratio, and Mach number and coefficient of pressure distribution over the wing.

4.1.1 Pressure Contours

When looking at the three-dimensional pressure contours generated by STARS the effects of the endplates can be easily seen. The wing without the endplate, Figure 4-1 shows how three-dimensional the airflow can be without the endplate. In these pressure plots the tip of the wing is the closest to the reader and the symmetry plane is the farthest. On the main element the suction pressure along the tip of the wing is dramatically decreased due to the spillover caused by the large pressure gradient present towards the tip of the wing. This can be seen by looking at the various color differences that are represented in the pressure bar on the right hand side of the figure.

Figure 4-1: Pressure Contours of the Wing without an Endplate

This effect is not only visible on the main element but can also be seen on the second and third elements as well. In Figure 4-1, only towards the tip of the wing the pressure contours tend to dissipate as compared to the pressure contour at the mid-span of the model. The wings with the endplates have a more uniformly distributed suction pressure strip along the entire length of the second element.

As for the last element on the three-element wing, the advantage of the endplate can once again be easily seen. The non-uniform pressure gradient appears to be in the shape of a quarter of an ellipse. Towards the tip of the third element in Figure 4-1, the wing without the endplate, a very distinct non-uniform pressure gradient can be seen. Although the pressure on wings with the endplates is not entirely uniform it is relatively more so than the wing without the endplate. This does not appear on the two wings with endplates as seen in Figure 4-2 with the style 3 endplate and Figure 4-3 with the new endplate design. For the two figures with endplates, the edge that appears closest to the reader is where the endplate is located. However, the endplate has been removed during the post-process plotting so that the pressure on the elements at the tip of the wing can be viewed.

Figure 4-2: Pressure Contour of Wing with Style 3 Endplate

On the wing with the style 3 endplate, Figure 4-2, the main element has evenly distributed pressure sections as we move from the leading edge of the main element and move back. The second element has a very uniform pressure distribution which is recognized when comparing the tip sections of Figure 4-1 and Figure 4-2. It is not until the third element that we see the tip pressure start to dissipate. The flow here is extremely high, over Mach 1, and the angle of this third element is at 65° to the free stream. When the conditions are remembered it is hard to believe that the pressure distribution at this section of the wing is as uniform as it appears.

Figure 4-3: Pressure Contour of Wing with New Style Endplate

The first and second elements of the wing with the new style of endplate in Figure 4-3 appear as uniform as they were in Figure 4-2 with the style 3 endplate. The third element for the new endplate design however appears to be more uniform then that of the third element of the style 3 endplate. This larger new endplate controls the flow better by reducing this spillover effect.

From another perspective, Figure 4-4 shows a side view of the endplate with the symmetry plane in the background. This then can be somewhat viewed as the gradient pressure that the endplate sees and thus shows once again why the airflow favors to spillover the top edge of the endplate. The bottom does not seem to be as great of a pressure gradient and thus only moderate spillover affects occur. This figure helped in
deciding how the new endplate geometry should be manipulated in order to reduce this pressure gradient.

Figure 4-4: Pressure Gradient for Style 3 Endplate

The figure above was produced during the initial studies of the flow around the three-element wing with the style 3 endplate and led into an investigation of the effects that endplates have on wing performance as well as my development of the new endplate design.

It can be seen the high-pressure on top, represented by the darker area in the figure, extends way above the wing as well as above the top of the endplate. Ideally, from the pressure gradient standpoint, it would be best to extend the endplate up until the pressure
in the far field is the same as the pressure on the endplate. There are two reasons why this is not done. First there is a point by which the overall drag will outweigh the benefit of extending the endplate. The second factor could be to make the structural strong enough without bearing a lot of weight on the vehicle. I admit that these are only a few of the many considerations that must be addressed for a real design but I was just concerned with minor changes to endplate geometry for improvement.

A simple change in the endplate geometry was decided so the top of the endplate is just the mirror image of the bottom. This change implemented the two changes that I felt were necessary to improve the performance characteristics of the dragster wing. First of all the overall height of the endplate above the wing was increased. Second there was an increase in height at an earlier stage in the flow.

4.1.2 Cross-Flow Velocity

A different view point can be looked at that shows how the flow over this threeelement wing is effected by endplate geometry. This different perspective is cross flow velocity cuts that show the flow on a cut plane at user specified locations on the wing. Cross-flow velocity cuts were taken at three different positions parallel to the flow velocity axis.

The first position was at a distance 7 inches back from the leading edge of the main airfoil as depicted in the far left picture of Figure 4-5. This was chosen to look at early spill over effects generated by the main element. The second cross-flow cut was at 14 inches back from the leading edge of the main element and can be seen in Figure 4-5 as well. This position cuts through the trailing edge of the main element and the leading
edge of the second element. The other picture in Figure 4-5 is the last cross-flow cut was located 20 inches back from the main element's leading edge. This is at the trailing edge of the last element where the most sever circulation can be seen. Each of these cut planes will be looked at separately although they each show similar results.

Figure 4-5: Cross Flow Velocity Cuts Represented by Vertical Lines

For the first cut plane at 7 inches back from the leading edge of the main element the spillover effect is minimal but the effects are very distinct. In Figure 4-6, without the endplate present, a circulation can be seen coming from the top of the wing around the tips of the wing to the suction side as discussed earlier. The figure shows a number of different size and oriented lines. The length of the line is proportional to the speed of the air around the dragster wing. The longer the line the faster the air is traveling. The orientation of the line is the direction of the air at that instance for the steady-state solution. The mid span of the half model is at the readers left hand side of these figures and the tip of the wing is on the right hand side. There is no endplate present to deflect this flow from circulating to the lower pressure side of the wing. From Figure 4-1 the three dimensional effects of can been seen from a different perspective from that discussed and shown earlier.

Figure 4-6: Cross-Flow Velocity 7 in. back from L.E. w/o an Endplate

If we now look at the second cross-flow plane cut, 14 inches back from the leading edge of the main element, the circulation strength is increased. Figure 4-7 shows the increased velocity of the flow coming around the tip of the wing.

Figure 4-7: Cross-Flow Velocity 14 in. back from L.E. w/o an Endplate

The same effects can once again be seen in the cross-flow velocity plane cut towards the trailing edge of the third element.

Figure 4-8: Cross-Flow Velocity 20 in. back from L.E. w/o an Endplate

Figure 4-9: Cross-Flow Velocity 7 in. back from L.E. with Style 3 Endplate

Comparing that to the wing with the style 3 endplate, Figure 4-9. it can be seen that the airflow hits the inside of the endplate and is forced to flow up and over the endplate. At the top of the endplate the circulation is still present but it is less noticeable and certainly less sever. This circulation is disruptive to the suction side of the wing causing a decrease in suction as was shown in Figure 4-1 where the pressure is very noticeable changed. This is why endplates are so important to a low aspect ratio wing such as this rear dragster wing. Now since this circulation arose this early on in the flow it was decided that the height of the new endplate design needed to be increased at this location. This was also seen previously from the pressure gradient in Figure 4-4

Figure 4-10: Cross-Flow Velocity 14 in. back from L.E. with Style 3 Endplate

The spillover effects are increased as seen in Figure 4-10. Again the high pressure gradients that are present matched with the shortness of the endplate above the airfoil section allow this flow to spill over and disrupt the flow.

Figure 4-11: Cross-Flow Velocity 20 in. back from L.E. with Style 3 Endplate

The style 3 endplate has hardly any height above the trailing edge of the third element so the effects of the endplate are very minimal. The lower portion of the style 3 endplate is beneficial to reducing the circulation around the suction side of the wing.

Figure 4-12: Cross-Flow Velocity 7 in. back from L.E. with New Endplate

Now looking at the new endplate design in Figure 4-13 the effects of the increased height still shows an improvement in the reduction of the spillover effect. The airflow has to travel a longer distance up over the endplate while decreasing its pressure gradient to the airflow on the outside of the endplate. Thus there is a decrease in the spillover.

Figure 4-13: Cross-Flow Velocity 14 in. back from L.E. with New Endplate

Figure 4-14: Cross-Flow Velocity 20 in. back from L.E. with New Endplate

Once again it was necessary on the new endplate design to increase the height above the third element in an attempt to reduce this circulation over the top of the endplate. It was once again very beneficial to incorporate this height change as can be seen in the reduced circulation in Figure 4-14

This cross-flow velocity is only one view of what is going on as far as the flow velocity on and around the endplate. Therefore, it is necessary to look at a cut plane velocity profile parallel to the endplate.

4.1.3 Velocity at the Tip of the Wing

The velocity around the tip of the wing can give even more insight to the benefits of the endplates. In Figure 4-15, a cut plane at the tip of the wing, shows the circulation generated by the wing and how disruptive and almost how chaotic the airflow is behind the three-elemental wings due to the lack of an endplate.

Figure 4-15: Velocity at the Wingtip without an Endplate

If there were an endplate attached the spillover flow would be reduced making for a less disruptive flow on the bottom of the wing. This is shown by looking at the flow on top and on bottom of the wing with an endplate present as in Figure 4-16. There are no distinct disruptive flows coming around the wingtips because the flow as you can see has to travel over the endplate. Figure 4-16 is a good example to show that the flow moves up the inside of the endplate which would then spillover and mix with the existing flow on the outside of the endplate. Once again it should be noted that the idea is to reduce the amount of flow spilling over.

Figure 4-16: Velocity just inside Style 3 Endplate

Compare the velocity just inside the endplate of Figure 4-16 with the style 3 endplate to Figure 4-17 with the new endplate design. It can be seen that the flow at the
top of the new endplate design, Figure 4-17, is not as vertical as the flow at the top of the style 3 endplate. This indicates that there is less severity to the disruptive nature of the flow as airflow spills over. The angle of the velocity at the top of the new endplate design becomes very similar to that of the style 3 endplate towards the tail end of the endplate. This is due to the last wing element being at such a high angle, 65°, causing the flow to accelerate in the direction of its projected chord line.

Figure 4-17: Velocity just inside New Endplate

4.1.4 Down Force to Drag Ratio

Another important parameter to look at the effects that endplate geometry have on the ratio of down force to drag. This parameter allows easy comparison between the
different geometry. The idea is to maximize the ratio of down force to drag. It should be noted that it is not being said that we want to maximize the amount of down force but we want to maximize the ratio, ie get the most down force with the least amount of drag.

The forces that are calculated using STARS are not the actual down force and drag forces directly. They are in fact non-dimensional lift and drag coefficients. However they are not non-dimensional in the true sense but the coefficient of pressure is divided by a factor of two. We can utilize these coefficients without further manipulation since the ratio of the down force to drag is being calculated.

If we look at Table 4-1 at the wing without the endplate and compare it to the either of the wings with an endplate. There is a large difference in the amount of down force created by the wing with endplates. The drag however for the wing without the endplate is smaller but this is not important because we are concerned with the ratio of the two parameters.

	Down Force	Drag	L/D Ratio
No Endplate	741.9	232.4	3.19
Style 3 Endplate	960.7	258.5	3.72
New Endplate	967.6	242.6	4.0

Table 4-1: Down Force and Drag for the Three Test Cases Analyzed

If we look at the actual increase in the down force to drag ratio we can get a better feel for how much of an improvement changing the endplate can have. As shown in Table 4-2 there is a 16.6% increase in the ratio when we attach the style 3 endplate to the basic wing. This ratio is further increased by 25.4% when we look at adding the new endplate design. This data shows that the new endplate design is effective because it
increases the down force to drag ratio by 7.2% over the style 3 endplate while only adding a minimal amount of area to the overall wing.

Geometry being Compared	Percent Increase of Lift to Drag Ratio
No Endplate to Style 3	16.6
No Endplate to New Design	25.4
Style 3 to New Design	7.2

Table 4-2: Increase of Lift to Drag Ratio for the Three Test Cases Analyzed

4.1.5 Mach Number and Coefficient of Pressure Distribution

The Mach number and coefficient of pressure distribution at the tip of the wing can be useful in showing where the maximum amount of flow velocity and suction is occurring, respectively. This gives the analysis a more physical comparison than just looking at the three-dimensional color pressure plots as was shown in the beginning of the section.

The pressure distribution in Figure 4-18 shows the coefficient of pressure for each of the three test cases analyzed. The first case where there was not an endplate, the coefficient of pressure on the suction side is about -2.5 on the first element as compared to -3 for the wings with the endplates. For the second wing element the difference in pressure on the suction side between the wing with an endplate and the wing without an endplate is about 1.5. The suction side of the third element and the positive pressure sides of all three-elements do not show a dramatic difference but there is still a moderate change.

Figure 4-18: Pressure Distribution at the Tip of the Wing for Three Configurations

For the difference between the coefficient of pressure on the two endplates it is very difficult to tell from this data which is better. Although if you look closely at the positive pressure side of the wing, or top of the wing, you will notice that the new endplate design gives a little bit higher pressure.

As for the Mach number distribution in Figure 4-19 it can be seen that the Mach number for the wings with the endplates allowed for a larger amount of data points to become supersonic. The maximum Mach number for the wing without the endplate only reaches about eight-tenths the speed of sound on the first element. Comparing this to the
first element for the wings with endplates, the Mach numbers almost reaches the speed of sound. For the second wing element the effect of the endplate is about the same. On the third wing element there is not a noticeable difference.

Figure 4-19: Mach Distribution at the Tip of the Wing for the Three Configurations

The topside of the wing shows a pretty uniform Mach number distribution between the three test cases analyzed. There is a slight increase in Mach number for the new endplate design over the style 3 endplate. It is believed that this can be linked to the reduced spillover affect seen on the top of the endplate.

4.2 Gap Spacing Comparisons for a Three-Element Dragster Wing

Gap spacing can affect the performance characteristics of these wings as well. Therefore the effects of gap spacing between the elements of a multi-element wing will be studied This gap spacing is critical because it allows a certain amount of flow to pass between the elements and this amount of flow is very sensitive when looking at the performance of a multi-element wing.

The best way to look at this is a velocity cut plane at the mid span of the half model as seen in Figure 4-20. The multi-element wing has a $0^{\circ}-28^{\circ}-65^{\circ}$ configuration at a Mach umber of 0.434 for an overall angle of attack of 0°. As a reminder the configuration, 0° -$28^{\circ}-65^{\circ}$, refers to the angle of attack of each of the three individual elements.

Figure 4-20: Velocity Profile of Wing with Original Gap Spacing

Pay attention to the gap size in between the elements as well as the flow field around and in between the gaps when looking at Figure 4-20 and Figure 4-21. It can be seen in Figure 4-20 that the flow around the second element, particularly the flow right in front of the second element, is more smooth looking than the flow around the second element in Figure 4-21. In the latter mentioned figure the gap size is too large and allows too much air to flow to pass. This causes a Ventura affect before the second element letting a massive amount of air through the gap which disrupts the flow. The same effects can be seen in the flow around the third element.

Figure 4-21: Velocity Profile of Wing with Modified Gap Spacing

When looking at the flow at the trailing edge of the third element another effect can be seen. With the increase in gap spacing the appears to be a flow separation. An Euler flow solver is unable to predict flow separation but the chaotic flow just aft of the trailing
edge of the third element shows signs of flow separation. It almost appears to have a circulation around this area and is very disruptive to the flow.

When the gap size was increased there was a decrease in the amount of down force generated. The decrease in down force was 6.8% under the amount of down force generated by the original gap spacing. The increased gap spacing also resulted in an increased the down force to drag ratio by 15.7%.

4.3 Angle of Attach Comparisons of Three-Element Dragster Wings

The effects of angle of attack on dragster wing with the style 3 endplate was studied to see how it affected the performance of the wing. The configuration was a $0^{\circ}-28^{\circ}-65^{\circ}$ wing that was varied at two different angles of attack being 0° and 5°. The reason for this analysis is due to the top-fuel dragster teams wanting to vary the angle of attack on the rear wing to change the performance characteristics. These comparisons were looked at both through pressure cut plane data as well as down force and drag data, which was generated using STARS.

The pressure distribution data, as seen in Figure 4-22, is a pressure cut plane at mid span of the half model. As seen in the figure below there is little differences for the last two elements in the coefficient of pressure between each of the two angles of attack. However, the main difference appear on the first element and are mainly present toward the leading edge of that element. When the whole wing is rotated 5°, tilted forward, the suction pressure has a greater distribution than the wing at 0° angle of attack. When looking from three quarters of the way back from the leading edge of the first element all the way back to the trailing edge of the third element there is little difference.

Pressure Distribution for $0^{\circ}-28^{\circ}-65^{\circ}$ Configuration
Mach $=0.434, \alpha=0^{\circ}$ and $\alpha=5^{\circ}$

Figure 4-22: Pressure Plots for Angle of Attack Comparisons

For a feel on how much it affects the performance of the wing it is necessary to look at the down force and drag of the wing. An increase in angle of attack to $\alpha=5^{\circ}$ increases the down force by 8.9%. This might be considered good if all we were interested in was down force the drag must be considered in our case. The drag also increased but increased by 20.4%. This is greater than the increase in down force and therefore it decreases the down force to drag ratio by 9.7%. Based upon wing performance alone this increase in angle of attack would be a mistake.

4.4 World Record Performances

It should be noted that the improvement to the endplate design over the previously used style 3 endplate helped two top-fuel dragster teams break two different world records. Two weeks after the introduction of this new endplate Larry Dixon piloted a dragster owned by Don Prudhomme to the quickest elapse time record in the quarter mile history. At Houston Park Raceway in April of 1999 he posted a 4.486 second run beating the previous record by 0.03 seconds. Weeks later, with the same new endplate design, Tony Schumacher at the Checker-Schuck's Kragen Nationals downed the top-fuel dragster speed record reaching 330.23 mph in the quarter mile.

Granted the wing was not the only factor involved in the record-breaking runs but given the vast improvements they can be considered to be somewhat responsible. These wings can require close to 2000 hp to drag them through the air. The new endplate design reduced the drag and thus reduced the needed horsepower to drag the wing through the air. This additional horsepower can then go to acceleration and thus potentially allowing the vehicle to reduce the elapsed time or increase the top speed.
4.5 Using the Dragster Model to Analyze the Problem

Since the model matched the actual data well it is now the objective to see what affects the aerodynamics has on the performance of the dragster.

The first figure below, Figure 4-23, shows the actual input power to a dragster. This is used for the input power to the dragster for the validation analysis in the previous section. Along with this input power is the power left over to accelerate the dragster and
is labeled acceleration power. This is the power after the drag and various friction components are taken away from the trust component. This acceleration power is an output from the model. There is a point on the plot that is labeled critical horsepower and this is the point where the vehicle hits critical velocity. At any time below this the model is assuming that it is on the verge of slipping which was discussed in earlier sections.

Figure 4-23: Input Power Curve and Acceleration Power Curve versus Time

Looking at difference in power between the two curves is an indication into how much power is being lost. The acceleration power is critical because this is the power being used to accelerate the vehicle. Therefore it is necessary to determine where these loses are coming from.

In the next figure, Figure 4-24, there are two additional lines. One is the amount of power that the car absorbs due to drag and friction. Looking at the drag coefficient of the wing in comparison, Table 4-3, with the rest of the components under consideration showed that it was a major factor in this power loss.

Coefficient of Drag Scaled to Wing Area

Wheels	Cl	-0.14142	Cogotti for Rotating Wheels
	Cd	0.45489	Cogotti for Rotating Wheels
Wing Induced	Cl	-2.47700	STARS
	Cd	0.60100	STARS
Wing Area Top	Cd	0.00963	Estimated
Wing Area Endplate	Cd	0.00380	Estimated
Body	Cd	0.01733	Estimated by 3D Wedge

Table 4-3: Lift and Drag Coefficients for the Dragster Model

Figure 4-24: Power Curves along with Drag Power versus Time

At the end of the race the wing is making up almost two thirds of the total loss of power of the dragster. It is necessary to find out how changing this drag would affect the performance of the dragster. In order to do this the model was run with different drag coefficients while keeping constant the lift to drag ratio. This was done for four drag coefficients and six different lift to drag ratios and the results can be seen in Figure 4-25

Figure 4-25: Elapsed Time and Speed Data for Varying Drag Coefficient

This figure shows how much reducing the drag coefficient can improve the elapsed time of the dragster as well as how much it can increase the top speed. The X on the figure shows a dragster whose lift and drag characteristics were estimated and the wing data was generated from STARS for the finnew wing design. The finnew design is a wing that is currently being used by several dragster teams. The elapsed times and top speed are not current with the times and top speeds of today's dragsters but it must be understood that the input power used was from actual data that might not meet the siput power data of a dragster now. The idea of this is to not look at the times and speeds that were achieved but to look at the trends of changing the parameters.

Another point on the graph to look at is the + mark. This run is the same dragster but the wing is taken off so that is produces not down force or drag force. It has a lower elapsed time because the reduction in drag but the catch is that the driving style would have to change. This can better be seen below in Figure 4-26.

Figure 4-26: Elapsed Time and Critical Speed Data for Varying Drag Coefficient

The critical speed is over twice that of the dragster with the wing. This means that there is not enough down force early on and with the given input power curve it is not able to give full power until it reaches this speed. If it had more power earlier than this point than the tires would slip and loose traction. This means that the driver must be less
aggressive during the race in the dragster without the wing. This shows how important reducing this drag can be as far as performance is concerned.

The question then is whether running a dragster without a wing is the best or is there some other way that is better. It is still not know how the lift coefficient affects the performance of the dragster. The question must be answered then how much lift does the dragster need and at what point on the track is the lift needed? The best way to figure this out is to vary the lift coefficient for a fixed lift to drag ratio. This data is plotted below in Figure 4-27

Figure 4-27: Elapsed Time and Speed Data for Varying Lift Coefficient

Looking at the constant drag coefficient lines $\left(\mathrm{C}_{\mathrm{d}}=0.6\right.$ and $\left.\mathrm{C}_{\mathrm{d}}=0.4\right)$ backs up the theory from before that to get a better elapsed time it is necessary to reduce the drag coefficient. The lift coefficient can be looked at as well showing that for a constant lift to drag ratio reducing the lift coefficient from -3 to -0.5 will reduce the elapsed time and increase the top speed of the dragster. Once the dragster gets below a lift coefficient of around -0.5 the elapsed time increases. This starts to show that reducing the lift coefficient down to zero does not help the performance of the dragster.

In this region where there is a low lift coefficient and a high lift to drag ratio the performance of the dragster suffers because of the critical speed is too great for the car to have its best run. This can better be seen in Figure 4-28. The elapsed time is around 175 mph . This is somewhat misleading because the drag coefficient for the dragster cannot be this low unless significant modifications to the aerodynamics of the overall car is made. Looking at the run of the dragster without the wing it has a drag coefficient between 0.4 and 0.6 . The drag from the large open wheels and the body of the dragster are to blame for this drag.

Figure 4-28: Elapsed Time and Critical Speed Data for Varying Lift Coefficient

These figures are somewhat misleading because if we are looking at changing the wing on the car then it is not simply looking at just changing the lift coefficient. Lets say for instance that you were looking at changing the angle of attack of a wing and you were able to increase the lift coefficient from -1 to -2 . It is clear at to where the lift coefficient lines are and how they affect elapsed time but what now happens is that when the angle of attack changed not only did the lift coefficient change but the lift to drag ratio changed as well. So it is not as easy to see how it is affected because the lift to drag ratio is not constant and the user of the figures must determine the new lift to drag ratio.

Wing configurations will be plotted later in this paper but what I want to do is to talk about designing a new wing. From looking at the previous plots a wing that has a
lower lift coefficient with the highest lift to drag ratio will get us into a lower elapsed time. As was mentioned earlier the design of a boxwing was considered for many reasons and the results from STARS will be discussed in the next section.

4.6 Steady Results of Boxwing Design

The new boxwing design was analyzed computationally using STARS. The performance characteristics of this wing compared to the old style three-element wings will be looked at in this section. Various plots and figures are provided to show a variety of different comparisons between the wings including pressure plots, mach plots, coefficient of lift versus angle of attack, coefficient of drag versus angle of attack, coefficient of lift versus coefficient of drag, and several others.

4.6.1 Decalage Angle Comparisons

STARS simulations were performed for various boxwing configurations. The decalage angle was varied for three different angles. For every decalage angle the angle of attack was then varied over a wide range to find the characteristics of this particular type of wing. This data was used to analyze the performance of this wing and then use it also to compare this boxwing to existing wings.

4.6.1.1 Pressure Plots

The pressure plots are for three different decalage angles for a wide range of overall wing angle of attacks. The side view of the wing at zero angle of attack is also plotted on the graphs in order to clarify the two distinct sections of pressure distribution on the plots.

The two regions of pressure distribution clearly show the difference in loading of the two wings. The front wing is loaded too much while the back wing is not loaded enough. The reason that this happens is because the influence of the wings on each other. The front lower wing reduces the effective angle of attack of the back upper wing and the back upper wing increases the effective angle of attack that the lower front wing sees. This is why we change the decalage angle as to try to evenly load these wings to account for the influences of the wings on each other.

Figure 4-29: Pressure Plot for Boxwing at 0 Degree Decalage Angle

As can be seen in Figure 4-30 the pressure distribution is starting to level out and provide a more efficient wing. In this figure the decalage angle is 8°. As mentioned earlier the difference in angles between the two wings is the decalage angle. When the lower front wing is parallel to the ground, at a zero angle of attack, the upper back wing is turned at an 8° angle, where the tail of the wing is up.

Figure 4-30: Pressure Plot for Boxwing at 8 Degree Decalage Angle

Since the distribution is still quite a bit off another decalage angle is studied. The pressure distribution of a 12° decalage angle boxwing is shown in Figure 4-31. There are only two overall angles of attacks that were run using STARS but the patterns for the more evenly distributed pressure contours can be seen. In these plots the side view of the boxwing is also plotted and in this figure the decalage angle is more noticeable.

Figure 4-31: Pressure Plot for Boxwing at 12 Degree Decalage Angle

4.6.1.2 Mach Plots

Similarly to the pressure plots, the Mach plots are shown for three different decalage angles for a wide range of overall wing angle of attacks. The side view of the wing at zero angle of attack is also plotted on the graphs in order to clarify the two distinct sections of Mach distribution on the plots

The first plot, Figure 4-32, the decalage angle is 0° and once again the distribution of Mach number is distributed unevenly between the two wings. The Mach number on the lower front wing for high overall angles of attack has points where it is above Mach 1 but the upper back wing only sees subsonic flow no matter how high the overall angle of attack.

Figure 4-32: Mach Number Plot for Boxwing with 0 Degree Decalage Angle

The same patterns for the pressure plot for the 8° decalage angle occur for the Mach plot as well. In Figure 4-33 the distribution of Mach starts to even out. For the 21° angle of attack the upper back wing almost sees Mach 1 while the lower front wing sees Mach numbers to almost Mach 1.4.

Figure 4-33: Mach Numbar Plot for Boxwing at 8 Degree Declage Angle

The 12° decalage angle shown in Figure 4-34 once again looks like that of the pressure plot for the 12° decalage angle as expected. The angles of attack larger than 10° were not run but the patterns can be seen as the Mach distribution evens out even more. More decalage angles could have been run but the idea is not to get this wing to its optimal design but to look at a whole new approach to dragster wings to see if a better performance can be achieved which will be talked about in the next section.

Figure 4-34: Mach Number Plot for Boxwing at 12 Degree Decalage Angle

4.6.2 Boxwing and Three-Element Wing Comparisons

In an attempt to compare these different wing types certain wing performance characteristics were studied and plotted. Some of these include coefficient of lift versus angle of attack, coefficient of drag versus angle of attack, coefficient of lift to coefficient of drag, and coefficient of lift to drag versus angle of attack.

Figure 4-35: Coefficient of Lift vs Angle of Attack

The coefficient of lift versus angle of attack plot in Figure 4-35 shows how the lift coefficient a particular wing has when it is adjusted to a certain angle of attack. It can be seen that the wing labeled finnew, which is the three-element wing at a $0^{\circ}-28^{\circ}-65^{\circ}$ configuration with the new endplate, has quite a bit higher $\mathrm{C}_{\mathrm{L} \alpha}$ than the other boxwing designs. The boxwing design with a decalage angle of 12 degrees has the potential of reaching the same coefficient of lift as the finnew wing if the boxwing is set to an overall angle of attack of 20°.

Figure 4-36: Coefficient of Drag vs Angle of Attack

The next plot above Figure 4-36 is a plot of the coefficient of drag versus angle of attack.

This figure is deceiving at first because it looks like the boxwing design has a lot lower drag coefficient than the three-element design. This is not necessary true because the boxwing at these lower angles of attack does not produce the same lift as the threeelement wing at the same angles of attack. It might be better to look at the coefficient of drag to the coefficient of lift to see a better comparison.

Figure 4-37: Coefficient of Drag vs Coefficient of Lift

Figure 4-37 above represents the coefficient of drag versus the coefficient of lift plot. This allows for the comparison of how efficient the wings can be if you will. This tells us how much lift we can get out of a wing with the punishment of the amount of drag that the wing had by nature.

It is hard to compare the boxwing to the three-element wing in this plot because they do not have the same lift coefficient. Therefore it is better to look at a plot that compares the ratio of the coefficients of lift to drag versus the coefficient of lift. This gives a better comparison of the wings.

Figure 4-38: Coefficient of Lift to Drag vs Coefficient of Lift

This plot of the coefficients of lift to drag versus the coefficient of lift, shown in Figure 4-38, allows us to see the efficiency of the wings in a way. For a given coefficient of lift that is desired, a wing can be picked based upon its lift to drag ratio. A wing that has a better lift to drag ratio is punished less, in terms of drag, when there is an increase in the amount of lift produced. It is ideal to have a higher lift to drag ratio.

4.7 Dragster Performance Comparisons using the Dynamic Model

This portion of the results is what is the most important. Even though all the previous comparisons on wing performance was done the individual wing characteristics was not what this research was about fully. The true results is how these different wings and how the changes to these wings truly effected the overall performance of the
dragster. The improvements to the performance of the individual components is needed but the improvements should not be recognized without knowing how they will improve the performance of the dragster. Large improvements to a component might not necessarily provide large improvements to the performance of the dragster and vise versa.

A true test is to input these component changes into a dynamic model for the dragster and see how they affect the quarter mile time and speed. Since the dragster teams are concerned with the finishing times and top speeds of the dragsters then it is important to be able to give the teams a figure on how certain changes will affect the time and speed of their vehicles.

4.7.1 Performance Data for Various Rear Wings

Wing data from an actual dragster as well as the new boxwing design was used when running the model to determine how the aerodynamic changes would affect the performance. The wings were varied at different angles of attack since most dragster teams tamper with this feature. The data was plotted on the charts that were generated earlier and the results are shown in Figure 4-39.

The figure shows two wings with the first being the finnew design. This is a current wing that is being used on dragsters. It is varied for three different angles of attack from 0° to 10°. As the angle of attack increases so does the elapsed time while the top speed of the vehicle decreases.

The second wing that is analyzed is the boxwing configuration with an 8° decalage angle. This to was varied for several angles of attack. The angles range from -4° to 21° and are in increments of 5°. When the chord of the lower wing is parallel to ground then
the angle of attack is set to be at 0°. As the angle of attack is lowered from 21° the elapses time decreases and the top speed increases up until the wing is set to 1°. When the wing is set to a lower angle of attack the performance of elapsed time decreases but the top speed increases.

Figure 4-39: Elapsed Time and Speed Data with Different Wing Configurations

The next figure shows how this data affects the elapsed time and the critical speed of the dragster.

Figure 4-40: Elapsed Time and Speed Data with Different Wing Configurations

4.7.2 Performance Data for Various Input Power Curves

More data was studied looking at how the power input curve distribution effects the performance of the dragster. The wing and car properties were held constant and the input horsepower curve was varied. There are three power curves that were studied as can be seen in Figure 4-41

The actual power curve depicted on the figure is a curve fit from an actual run of a top-fuel dragster. This is the power curve used as an input to the model to generate all the other model data. Two other power curves were generated to look at how and in what way would the horsepower curve effect the performance of the dragster.

Figure 4-41: Model Power Input Curves to look at Horsepower Effects

This data was used for certain coefficients of lift and a constant drag coefficient of 1.0 to generate Figure 4-42 below. As can be seen the actual power curve is in the middle of the figure. When a lower power curve is used, simulating a dragster that has a reduced amount of power or maybe a slower start than usual, depicted by power curve three in Figure 4-41 the elapsed times increase and the top speed decrease considerably. For this power curve data the coefficients of lift can be looked at in more detail. For a higher lift coefficient like -3 the elapsed time is higher than that with a lower coefficient of lift such as -0.5 . This is a different trend for larger power curves where the elapsed
time improves as the coefficient of lift is increased as can be seen for the actual power curve as well as power curve two.

Power curve two as seen in Figure 4-41 increases the top speed and decreases the elapsed time of the dragster. The power curve has a higher horsepower curve than that of the actual power curve. There is an improvement in the performance of the dragster. Even having this higher power curve with a coefficient of lift of -0.5 compared to the actual power curve with a higher coefficient of lift, such as -3 , produces a lower elapsed time.

Figure 4-42: Power Curve Input Effects on Elapsed Time and Top Speed

This tells us that more power is important when it can be generated but whether more that power curve two is better has not been studied. Lower power curves, such as
power curve three, start to show that if the dragster has a reduction in power that it is better to have a lower lift coefficient. These three power curves were the only ones studied but a lot can be learned from them as far as performance effects are concerned.

What also should be noted in Figure 4-42 is the performance effects of the dragsters with and without the rear wing. The dragsters with the wings are represented by the "X" marks in the figure and the dragster without the wing is represented by the " + " marks. For the lower power curves the dragster without the wing out performs the dragster with the rear wing. For a dragster with greater power as in the actual power curve data, the dragster without the rear wing still has an advantage, elapsed time wise, over the dragster with the wing. When the highest power curve is looked at, power curve 2, the dragster with the wing has a lower elapsed time that the dragster without a rear wing.

This tells us that for lower powered dragsters, keeping all other parameters the same, it is better to take the rear wing off. If a dragster were to increase the power used today then the team would be more advantageous to put the wing on if having a rear wing or not were their only choices. I do want to reinstate the fact that these are not the only choices. As was shown previously, for the current dragsters today, using a lower drag wing with higher lift to drag ratios is better than no wing but using no rear wing right now is better that using the wings that the dragsters are currently using.

CHAPTER 5

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

By modeling the performance of a dragster and looking at the effects that aerodynamics has of the performance of a dragster has proven very beneficial. It gives us an insight into the questions of how much down force is needed and how changing these aerodynamic characteristics will truly effect the performance of the dragster. It was always said that these dragsters want as much down force as possible but from this model it is not necessarily true. What was shown to be the most beneficial is the reduction of the drag and the reduction of the coefficient of lift up to a certain point. The improvement to the lift to drag ratio is important as well and was the case for the new endplate design.

5.1.1 Dynamic Dragster Model

The dragster model matched actual top-fuel dragster data very well. It functioned in a manner that allowed me to show how each of the aerodynamic parameters, lift and drag, affect the performance of the dragster. It led to the study of improving wind design
by improving the current wing and also led to the knowledge of how a different style of wing might improve the performance even better.

5.1.2 Endplate Effects on a Top-Fuel Dragster Rear Wing

The study of endplate effects on top-fuel dragster wings proved to be beneficial in understanding how and to what extent an endplate has on the flow over a wing. The results presented led to vast improvements in rear wing design and helped two different top-fuel dragsters prevail on top of two different world records.

The addition of the new endplate improved the effectiveness of the wing. It allowed for a more uniform load distribution over the entire span of the wing. This in turn produced a greater down force and since it reduced the amount of spillover, or disruptive flow to the suction side, it reduced the amount of induced drag. With the new endplate design there was an increase of almost 7.2%, over the wing with the style 3 endplate, in terms of the ratio of down force to drag.

It should be noted that this solution does not take into consideration compressibility effects and since there is not any experimental data to compare it to the percent error cannot be provided.

5.1.3 Boxwing Design

The boxwing design compared to the currently used dragster wings showed much improvement to the overall performance of the dragster. The model was able to show how the lift and drag effected the performance of the dragster and this provided the
insight as to what characteristics were needed for the new dragster rear wing. With this wing we were able to get to a lower elapsed time and a higher top speed.

This was done to reduce the drag since it takes so much horsepower to drag the currently used dragster rear wings through the air. By reducing the induced drag of the wing we were able to shift the horsepower that was saved into accelerating the car. This amounted to quicker elapsed times and faster speeds which was one of the motives behind this research.

5.2 Recommendations

Improvement to this research can be made in a number of ways. Recommendations will be made starting with modeling of the dragster and going thru to each of the parts of this project all the way to the boxwing design.

5.2.1 Dynamic Dragster Model

Although the dragster model worked well in showing the trends of the aerodynamic affects on performance it did not have some features that might be very beneficial to dragster teams. Many of the parameters for this program were not actual parameters but estimated parameters because this information was hard to get. Future work might include collecting data from actual runs that will show how close the estimations were to the actual parameters. The parameters did give accurate enough results to enable me to match actual run data that was shown in the validation section.

Other recommendations might be to add other features to the program that might enable a dragster team to get the dragster ready for a particular track and weather conditions. Such features could include track conditions as far as where the track is slippery or any conditions that a dragster team might look for when setting up the dragster. A feature that might be nice is adding a clutch that you can set up to shift for given parameters.

5.2.2 Endplate Design Improvements

Although improvements to the wing characteristics were made by changing the endplate geometry there can still be some changes made to further optimize the design. The shape of the wing was not truly optimized but merely a change in design of the endplate was chosen that would see the extent of the improvement that such a change could make. Further design could be done to improve upon this endplate so as to truly optimize it for design.

Another consideration would be to consider the cost of the wing and try to make changes that could not only improve the design but also reduce the cost of the wing itself. Since the wings are made of carbon fiber the cost can be expensive to produce. Improvements in design could reduce the amount of material used and therefore reduce the cost.

Further, structural analysis could be done using a finite element code, such as STARS, to look at the strength of the various parts of the wing. The inner workings of the wing as well as the attaching mechanism should be studied to see if modification could be done to reduce weigh.

5.2.3 Boxwing Design

The boxwing design showed to reduce the elapsed time of the dragster as well as increase the top speed when compared to a wing that is currently being used on several top-fuel dragsters. This wing was in no way optimized to its full potential. There are many parameters that can be looked at such as the decalage angle as well as the endplate design used and looking into the structural and support of the wing could also be studied.

The decalage angles of $0^{\circ}, 8^{\circ}$ and 12° were studied and analyzed. Refining these angles would more than likely show better performance characteristics could be achieved. Having this range allowed me to see how this parameter affected this wing performance but not a lot of time was spent on getting the best decalage angle.

5.2.4 Stability of the Dragster

It is good to note that before the implementation of this new dragster wing that careful analysis be done on the stability of the dragsters. Since these wings have less drag and they allow the dragsters to function at higher speeds they should be once again analyzed to make sure that they are still safe.

BIBLIOGRAPHY

Arena, A.S. Jr. (1998-2000). Associate Professor, Oklahoma State University. Personal Communications.

Cogotti, A., "Aerodynamic Characteristics of Car Wheels," International Journal of Vehicle Design, Technological Advances in Vehicle Design Series, SP3, Impact of Aerodynamics on Vehicle Design, pp. 173-196, 1983.

Gupta, K.K., "STARS-An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program", NASA Technical Memorandum 4795, 1997.

Hallum, C., "The Magic of the Drag Tire", Society of Automotive Engineers Inc. Paper No. 942484, 1994.

Hawks, R.J. and C.L. Sayre, "Aerodynamics and Automobile Performance," Advances in Road Vehicle Aerodynamics 1973, pp. 1-13, BHRA Fluid Engineering (1973).

Katz, J., Race Car Aerodynamics: Designing for Speed, Robert Bentley Publishers, 1995.
Milliken, W.F. and D.L. Milliken, Race Car Vehicle Dynamics, Society of Automotive Engineers International, 1995.

Munson, B.R., Young, D.F., and T.H. Okiishi, Fundamentals of Fluid Mechanics, ${ }^{\text {nd }}$ Edition, John Wiley and Sons Inc., 1994.

Raymer, D.P., Aircraft Design: A Conceptual Approach, $2^{\text {nd }}$ Edition, American Institute of Aeronautics and Astronautics, 1992.

Selig, M., Airfoil data for Selig 1223, University of Illinois, Urbana, Illinois, July 14, 1995.

Smith, A.M.O., "High Lift Aerodynamics," Journal of Aircraft, Volume 12, Number 6, 1975, pp. 501-530.

Stapleford, W.R. and G.W. Carr, "Aerodynamic Characteristics of Exposed Rotating Wheels", MIRA Report No. 1970/2, 1969.

Stephens, C.H., "CFD-Based Aeroservoelastic Predictions on a Benchmark Configuration using the Transpiration Method", Masters Thesis, Oklahoma State University, July 1998.

Winn, R.C., Kohlman, D.L., and Kenner, M.T., "Optimal Wing Design for Top-Fuel Dragsters", American Institute of Aeronautics and Astronautics, Paper No. 99-0464, 1999.

2000 NHRA Rulebook, National Hot Rod Association, 1999.

APPENDICES

APPENDIX A-1

STARS-CFD Geometry Data File (fin.sur)

1 Geometry 26 lefinition...fin Curves			
1	1		
21			
-123.0000	0.000	0.000	
-121.7700	0.000	24.5680	
-116.8500	0.000	54.6612	
-107.0100	0.000	87.2439	
-89.7900	0.000	123.4354	
-68.8800	0.000	153.9419	
-39.3600	0.000	184.8124	
-7.3800	0.000	208.6080	
29.5200	0.000	227.5475	
71.3400	0.000	240.5142	
123.0000	0.000	246.0000	
174.6600	0.000	240.5142	
216.4800	0.000	227.5475	
253.3800	0.000	208.6080	
285.3600	0.000	184.8124	
314.8800	0.000	153.9419	
335.7900	0.000	123.4354	
353.0100	0.000	87.2439	
362.8500	0.000	54.6612	
367.7700	0.000	24.5680	
369.0000	0.000	0.000	
2	1		
21			
-123.00000	0.000	0.000	
-121.77000	0.000	-24.56802	
-116.85000	0.000	-54.66120	
-107.01000	0.000	-87.24390	
-89.79000	0.000	-123.43542	
-68.88000	0.000	-153.94188	
-39.36000	0.000	-184.81242	
-7.38000	0.000	-208.60800	
29.52000	0.000	-227.54754	
71.34000	0.000	-240.51420	
123.00000	0.000	-246.0000	
174.66000	0.000	-240.5142	
216.4800	0.000	-227.54754	
253.3800	0.000	-208.6080	
285.3600	0.000	-184.81242	
314.8800	0.000	-153.94188	

335.7900	0.000	-123.43542	
353.0100	0.000	-87.24390	
362.8500	0.000	-54.66120	
367.7700	0.000	-24.56802	
369.0000	0.000	0.000	
3	1		
36			
0.000	0.000	0.000	
0.0355	0.000	0.1008	
0.0500	0.000	0.1280	
0.1250	0.000	0.2295	
0.1875	0.000	0.2700	
0.3438	0.000	0.3338	
0.5000	0.000	0.3677	
0.7500	0.000	0.3750	
1.0000	0.000	0.3969	
1.5000	0.000	0.4207	
2.0000	0.000	0.4431	
2.5000	0.000	0.4654	
3.0000	0.000	0.4892	
3.5000	0.000	0.5135	
4.0000	0.000	0.5392	
4.5000	0.000	0.5639	
5.0000	0.000	0.5880	
5.5000	0.000	0.6091	
6.0000	0.000	0.6275	
6.5000	0.000	0.6417	
7.0000	0.000	0.6471	
7.5000	0.000	0.6386	
8.0000	0.000	0.6120	
8.5000	0.000	0.5693	
9.0000	0.000	0.5103	
9.5000	0.000	0.4324	
10.000	0.000	0.3359	
10.5000	0.000	0.2299	
11.0000	0.000	0.1166	
11.5000	0.000	0.000	
12.0000	0.000	-0.0946	
12.5000	0.000	-0.1530	
13.0000	0.000	-0.1589	
13.5000	0.000	-0.1024	
14.0000	0.000	0.0251	
14.1000	0.000	0.000	
4			

36		
0.000	0.000	0.000
0.0355	0.000	-0.1650
0.0500	0.000	-0.2000
0.1250	0.000	-0.3438
0.1875	0.000	-0.4375
0.3438	0.000	-0.6560
0.5000	0.000	-0.8073
0.7500	0.000	-1.0500
1.0000	0.000	-1.2280
1.5000	0.000	-1.5251
2.0000	0.000	-1.7441
2.5000	0.000	-1.9078
3.0000	0.000	-2.0330
3.5000	0.000	-2.1265
4.0000	0.000	-2.1939
4.5000	0.000	-2.2383
5.0000	0.000	-2.2599
5.5000	0.000	-2.2648
6.0000	0.000	-2.2554
6.5000	0.000	-2.2329
7.0000	0.000	-2.1972
7.5000	0.000	-2.1456
8.0000	0.000	-2.0793
8.5000	0.000	-1.9994
9.0000	0.000	-1.9026
9.5000	0.000	-1.7891
10.000	0.000	-1.6611
10.5000	0.000	-1.5153
11.0000	0.000	-1.3543
11.5000	0.000	-1.1782
12.0000	0.000	-0.9868
12.5000	0.000	-0.7811
13.0000	0.000	-0.5588
13.5000	0.000	-0.3248
14.0000	0.000	-0.0699
14.1000	0.000	0.000
5	1	
54		
54		
13.5405	0.000	0.7448
13.5428	0.000	0.7860
13.5549	0.000	0.8269
13.5766	0.000	0.8673

13.6076	0.000	0.9073	13.8110	0.000	0.5064
13.6475	0.000	0.9468	13.8898	0.000	0.4841
13.6960	0.000	0.9859	13.9779	0.000	0.4660
13.7525	0.000	1.0247	14.0748	0.000	0.4527
13.8167	0.000	1.0631	14.1800	0.000	0.4447
13.8880	0.000	1.1013	14.2930	0.000	0.4425
13.9660	0.000	1.1393	14.4130	0.000	0.4465
14.0503	0.000	1.1774	14.5394	0.000	0.4574
14.1403	0.000	1.2155	14.6714	0.000	0.4754
14.2355	0.000	1.2540	14.8081	0.000	0.5010
14.3354	0.000	1.2930	14.9486	0.000	0.5345
14.4398	0.000	1.3326	15.0921	0.000	0.5760
14.5480	0.000	1.3732	15.2376	0.000	0.6258
14.6598	0.000	1.4149	15.3843	0.000	0.6838
14.7746	0.000	1.4581	15.5312	0.000	0.7499
14.8923	0.000	1.5031	15.6774	0.000	0.8241
15.0123	0.000	1.5501	15.8192	0.000	0.9045
15.1343	0.000	1.5994	15.9552	0.000	0.9887
15.2581	0.000	1.6513	16.0900	0.000	1.0773
15.3861	0.000	1.7078	16.2233	0.000	1.1698
15.5197	0.000	1.7688	16.3544	0.000	1.2657
15.6547	0.000	1.8309	16.4830	0.000	1.3645
15.7906	0.000	1.8938	16.6087	0.000	1.4658
15.9269	0.000	1.9577	16.7310	0.000	1.5689
16.0631	0.000	2.0225	16.8496	0.000	1.6733
16.1987	0.000	2.0880	16.9643	0.000	1.7785
16.3332	0.000	2.1541	17.0747	0.000	1.8838
16.4662	0.000	2.2207	17.1805	0.000	1.9888
16.5971	0.000	2.2876	17.2816	0.000	2.0927
16.7255	0.000	2.3545	17.3777	0.000	2.1952
16.8509	0.000	2.4211	17.4687	0.000	2.2955
16.9729	0.000	2.4872	17.5544	0.000	2.3931
17.0911	0.000	2.5524	17.6348	0.000	2.4874
17.2050	0.000	2.6165	17.7097	0.000	2.5780
17.3142	0.000	2.6790	17.7790	0.000	2.6643
17.4184	0.000	2.7397	17.8428	0.000	2.7458
17.5171	0.000	2.7980	17.9009	0.000	2.8220
17.6101	0.000	2.8538	17.9535	0.000	2.8924
17.6970	0.000	2.9066	18.0004	0.000	2.9567
17.7774	0.000	2.9561	18.0417	0.000	3.0144
17.8512	0.000	3.0020	18.0775	0.000	3.0651
17.9179	0.000	3.0439	18.1076	0.000	3.1086
17.9774	0.000	3.0816	18.1323	0.000	3.1446
18.0295	0.000	3.1148	18.1514	0.000	3.1729
18.0739	0.000	3.1433	18.1651	0.000	3.1932
18.1104	0.000	3.1669	18.1733	0.000	3.2054
18.1390	0.000	3.1854	18.1760	0.000	3.2095
18.1595	0.000	3.1988	71		
18.1719	0.000	3.2068	54		
18.1760	0.000	3.2095	17.8359	0.000	3.4397
61			17.8074	0.000	3.4697
54			17.7857	0.000	3.5061
13.5405	0.000	0.7448	17.7707	0.000	3.5487
13.5483	0.000	0.7041	17.7621	0.000	3.5973
13.5664	0.000	0.6653	17.7599	0.000	3.6518
13.5948	0.000	0.6285	17.7637	0.000	3.7119
13.6336	0.000	0.5938	17.7734	0.000	3.7774
13.6826	0.000	0.5617	17.7886	0.000	3.8479
13.7418	0.000	0.5324	17.8091	0.000	3.9234

17.8346	0.000	4.0035
17.8647	0.000	4.0882
17.8992	0.000	4.1770
17.9376	0.000	4.2700
17.9797	0.000	4.3670
18.0250	0.000	4.4677
18.0732	0.000	4.5722
18.1239	0.000	4.6802
18.1766	0.000	4.7918
18.2314	0.000	4.9077
18.2905	0.000	5.0334
18.3530	0.000	5.1628
18.4185	0.000	5.2941
18.4864	0.000	5.4270
18.5565	0.000	5.5611
18.6283	0.000	5.6960
18.7015	0.000	5.8314
18.7757	0.000	5.9669
18.8505	0.000	6.1020
18.9255	0.000	6.2363
19.0004	0.000	6.3694
19.0748	0.000	6.5010
19.1485	0.000	6.6305
19.2209	0.000	6.7576
19.2920	0.000	6.8818
19.3613	0.000	7.0027
19.4286	0.000	7.1198
19.4936	0.000	7.2328
19.5561	0.000	7.3412
19.6159	0.000	7.4447
19.6726	0.000	7.5428
19.7262	0.000	7.6353
19.7763	0.000	7.7217
19.8228	0.000	7.8017
19.8655	0.000	7.8750
19.9042	0.000	7.9414
19.9388	0.000	8.0005
19.9691	0.000	8.0523
19.9950	0.000	8.0964
20.0163	0.000	8.1328
20.0330	0.000	8.1612
20.0450	0.000	8.1815
20.0522	0.000	8.1938
20.0546	0.000	8.1979
8	1	
54		
17.8359	0.000	3.4397
17.8704	0.000	3.4171
17.9104	0.000	3.4027
17.9558	0.000	3.3966
18.0063	0.000	3.3991
18.0619	0.000	3.4102
18.1221	0.000	3.4302
18.1867	0.000	3.4592
18.2551	0.000	3.4973
18.3268	0.000	3.5445
18.4013	0.000	3.6010
18.4780	0.000	3.6668
18.5561	0.000	3.7417

18.6349	0.000	3.8258	5.0000	29.7500	0.5880
18.7138	0.000	3.9188	5.5000	29.7500	0.6091
18.7921	0.000	4.0205	6.0000	29.7500	0.6275
18.8690	0.000	4.1306	6.5000	29.7500	0.6417
18.9439	0.000	4.2487	7.0000	29.7500	0.6471
19.0161	0.000	4.3744	7.5000	29.7500	0.6386
19.0846	0.000	4.5065	8.0000	29.7500	0.6120
19.1466	0.000	4.6385	8.5000	29.7500	0.5693
19.2062	0.000	4.7740	9.0000	29.7500	0.5103
19.2642	0.000	4.9135	9.5000	29.7500	0.4324
19.3204	0.000	5.0564	10.000	29.7500	0.3359
19.3747	0.000	5.2022	10.5000	29.7500	0.2299
19.4270	0.000	5.3503	11.0000	29.7500	0.1166
19.4772	0.000	5.5001	11.5000	29.7500	0.000
19.5253	0.000	5.6509	12.0000	29.7500	-0.0946
19.5712	0.000	5.8023	12.5000	29.7500	-0.1530
19.6149	0.000	5.9535	13.0000	29.7500	-0.1589
19.6564	0.000	6.1040	13.5000	29.7500	-0.1024
19.6956	0.000	6.2531	14.0000	29.7500	0.0251
19.7325	0.000	6.4004	14.1000	29.7500	0.000
19.7671	0.000	6.5452	101		
19.7995	0.000	6.6870	36		
19.8296	0.000	6.8252	0.000	29.7500	0.000
19.8576	0.000	6.9592	0.0355	29.7500	-0.1650
19.8833	0.000	7.0887	0.0500	29.7500	-0.2000
19.9069	0.000	7.2130	0.1250	29.7500	-0.3438
19.9284	0.000	7.3317	0.1875	29.7500	-0.4375
19.9479	0.000	7.4443	0.3438	29.7500	-0.6560
19.9654	0.000	7.5505	0.5000	29.7500	-0.8073
19.9811	0.000	7.6497	0.7500	29.7500	-1.0500
19.9950	0.000	7.7417	1.0000	29.7500	-1.2280
20.0072	0.000	7.8261	1.5000	29.7500	-1.5251
20.0178	0.000	7.9024	2.0000	29.7500	-1.7441
20.0269	0.000	7.9705	2.5000	29.7500	-1.9078
20.0345	0.000	8.0301	3.0000	29.7500	-2.0330
20.0408	0.000	8.0809	3.5000	29.7500	-2.1265
20.0459	0.000	8.1228	4.0000	29.7500	-2.1939
20.0497	0.000	8.1555	4.5000	29.7500	-2.2383
20.0524	0.000	8.1790	5.0000	29.7500	-2.2599
20.0541	0.000	8.1931	5.5000	29.7500	-2.2648
20.0546	0.000	8.1979	6.0000	29.7500	-2.2554
91			6.5000	29.7500	-2.2329
36			7.0000	29.7500	-2.1972
0.000	29.7500	0.000	7.5000	29.7500	-2.1456
0.0355	29.7500	0.1008	8.0000	29.7500	-2.0793
0.0500	29.7500	0.1280	8.5000	29.7500	-1.9994
0.1250	29.7500	0.2295	9.0000	29.7500	-1.9026
0.1875	29.7500	0.2700	9.5000	29.7500	-1.7891
0.3438	29.7500	0.3338	10.000	29.7500	-1.6611
0.5000	29.7500	0.3677	10.5000	29.7500	-1.5153
0.7500	29.7500	0.3750	11.0000	29.7500	-1.3543
1.0000	29.7500	0.3969	11.5000	29.7500	-1.1782
1.5000	29.7500	0.4207	12.0000	29.7500	-0.9868
2.0000	29.7500	0.4431	12.5000	29.7500	-0.7811
2.5000	29.7500	0.4654	13.0000	29.7500	-0.5588
3.0000	29.7500	0.4892	13.5000	29.7500	-0.3248
3.5000	29.7500	0.5135	14.0000	29.7500	-0.0699
4.0000	29.7500	0.5392	14.1000	29.7500	0.000
4.5000	29.7500	0.5639	111		

54		
13.5405	29.7500	0.7448
13.5428	29.7500	0.7860
13.5549	29.7500	0.8269
13.5766	29.7500	0.8673
13.6076	29.7500	0.9073
13.6475	29.7500	0.9468
13.6960	29.7500	0.9859
13.7525	29.7500	1.0247
13.8167	29.7500	1.0631
13.8880	29.7500	1.1013
13.9660	29.7500	1.1393
14.0503	29.7500	1.1774
14.1403	29.7500	1.2155
14.2355	29.7500	1.2540
14.3354	29.7500	1.2930
14.4398	29.7500	1.3326
14.5480	29.7500	1.3732
14.6598	29.7500	1.4149
14.7746	29.7500	1.4581
14.8923	29.7500	1.5031
15.0123	29.7500	1.5501
15.1343	29.7500	1.5994
15.2581	29.7500	1.6513
15.3861	29.7500	1.7078
15.5197	29.7500	1.7688
15.6547	29.7500	1.8309
15.7906	29.7500	1.8938
15.9269	29.7500	1.9577
16.0631	29.7500	2.0225
16.1987	29.7500	2.0880
16.3332	29.7500	2.1541
16.4662	29.7500	2.2207
16.5971	29.7500	2.2876
16.7255	29.7500	2.3545
16.8509	29.7500	2.4211
16.9729	29.7500	2.4872
17.0911	29.7500	2.5524
17.2050	29.7500	2.6165
17.3142	29.7500	2.6790
17.4184	29.7500	2.7397
17.5171	29.7500	2.7980
17.6101	29.7500	2.8538
17.6970	29.7500	2.9066
17.7774	29.7500	2.9561
17.8512	29.7500	3.0020
17.9179	29.7500	3.0439
17.9774	29.7500	3.0816
18.0295	29.7500	3.1148
18.0739	29.7500	3.1433
18.1104	29.7500	3.1669
18.1390	29.7500	3.1854
18.1595	29.7500	3.1988
18.1719	29.7500	3.2068
18.1760	29.7500	3.2095
12	1	
54		
13.5405	29.7500	0.7448
13.5483	29.7500	0.7041

13.5664	29.7500	0.6653
13.5948	29.7500	0.6285
13.6336	29.7500	0.5938
13.6826	29.7500	0.5617
13.7418	29.7500	0.5324
13.8110	29.7500	0.5064
13.8898	29.7500	0.4841
13.9779	29.7500	0.4660
14.0748	29.7500	0.4527
14.1800	29.7500	0.4447
14.2930	29.7500	0.4425
14.4130	29.7500	0.4465
14.5394	29.7500	0.4574
14.6714	29.7500	0.4754
14.8081	29.7500	0.5010
14.9486	29.7500	0.5345
15.0921	29.7500	0.5760
15.2376	29.7500	0.6258
15.3843	29.7500	0.6838
15.5312	29.7500	0.7499
15.6774	29.7500	0.8241
15.8192	29.7500	0.9045
15.9552	29.7500	0.9887
16.0900	29.7500	1.0773
16.2233	29.7500	1.1698
16.3544	29.7500	1.2657
16.4830	29.7500	1.3645
16.6087	29.7500	1.4658
16.7310	29.7500	1.5689
16.8496	29.7500	1.6733
16.9643	29.7500	1.7785
17.0747	29.7500	1.8838
17.1805	29.7500	1.9888
17.2816	29.7500	2.0927
17.3777	29.7500	2.1952
17.4687	29.7500	2.2955
17.5544	29.7500	2.3931
17.6348	29.7500	2.4874
17.7097	29.7500	2.5780
17.7790	29.7500	2.6643
17.8428	29.7500	2.7458
17.9009	29.7500	2.8220
17.9535	29.7500	2.8924
18.0004	29.7500	2.9567
18.0417	29.7500	3.0144
18.0775	29.7500	3.0651
18.1076	29.7500	3.1086
18.1323	29.7500	3.1446
18.1514	29.7500	3.1729
18.1651	29.7500	3.1932
18.1733	29.7500	3.2054
18.1760	29.7500	3.2095
13	1	
54		
17.8359	29.7500	3.4397
17.8074	29.7500	3.4697
17.7857	29.7500	3.5061
17.7707	29.7500	3.5487
17.7621	29.7500	3.5973

17.7599	29.7500	3.6518	18.2551	29.7500	3.4973
17.7637	29.7500	3.7119	18.3268	29.7500	3.5445
17.7734	29.7500	3.7774	18.4013	29.7500	3.6010
17.7886	29.7500	3.8479	18.4780	29.7500	3.6668
17.8091	29.7500	3.9234	18.5561	29.7500	3.7417
17.8346	29.7500	4.0035	18.6349	29.7500	3.8258
17.8647	29.7500	4.0882	18.7138	29.7500	3.9188
17.8992	29.7500	4.1770	18.7921	29.7500	4.0205
17.9376	29.7500	4.2700	18.8690	29.7500	4.1306
17.9797	29.7500	4.3670	18.9439	29.7500	4.2487
18.0250	29.7500	4.4677	19.0161	29.7500	4.3744
18.0732	29.7500	4.5722	19.0846	29.7500	4.5065
18.1239	29.7500	4.6802	19.1466	29.7500	4.6385
18.1766	29.7500	4.7918	19.2062	29.7500	4.7740
18.2314	29.7500	4.9077	19.2642	29.7500	4.9135
18.2905	29.7500	5.0334	19.3204	29.7500	5.0564
18.3530	29.7500	5.1628	19.3747	29.7500	5.2022
18.4185	29.7500	5.2941	19.4270	29.7500	5.3503
18.4864	29.7500	5.4270	19.4772	29.7500	5.5001
18.5565	29.7500	5.5611	19.5253	29.7500	5.6509
18.6283	29.7500	5.6960	19.5712	29.7500	5.8023
18.7015	29.7500	5.8314	19.6149	29.7500	5.9535
18.7757	29.7500	5.9669	19.6564	29.7500	6.1040
18.8505	29.7500	6.1020	19.6956	29.7500	6.2531
18.9255	29.7500	6.2363	19.7325	29.7500	6.4004
19.0004	29.7500	6.3694	19.7671	29.7500	6.5452
19.0748	29.7500	6.5010	19.7995	29.7500	6.6870
19.1485	29.7500	6.6305	19.8296	29.7500	6.8252
19.2209	29.7500	6.7576	19.8576	29.7500	6.9592
19.2920	29.7500	6.8818	19.8833	29.7500	7.0887
19.3613	29.7500	7.0027	19.9069	29.7500	7.2130
19.4286	29.7500	7.1198	19.9284	29.7500	7.3317
19.4936	29.7500	7.2328	19.9479	29.7500	7.4443
19.5561	29.7500	7.3412	19.9654	29.7500	7.5505
19.6159	29.7500	7.4447	19.9811	29.7500	7.6497
19.6726	29.7500	7.5428	19.9950	29.7500	7.7417
19.7262	29.7500	7.6353	20.0072	29.7500	7.8261
19.7763	29.7500	7.7217	20.0178	29.7500	7.9024
19.8228	29.7500	7.8017	20.0269	29.7500	7.9705
19.8655	29.7500	7.8750	20.0345	29.7500	8.0301
19.9042	29.7500	7.9414	20.0408	29.7500	8.0809
19.9388	29.7500	8.0005	20.0459	29.7500	8.1228
19.9691	29.7500	8.0523	20.0497	29.7500	8.1555
19.9950	29.7500	8.0964	20.0524	29.7500	8.1790
20.0163	29.7500	8.1328	20.0541	29.7500	8.1931
20.0330	29.7500	8.1612	20.0546	29.7500	8.1979
20.0450	29.7500	8.1815	151		
20.0522	29.7500	8.1938	2		
20.0546	29.7500	8.1979	0.000	$0.000 \quad 0.00$	
141			0.000	29.75000	0.000
54			161		
17.8359	29.7500	3.4397	2		
17.8704	29.7500	3.4171	14.1000	$0.000 \quad 0$	0.000
17.9104	29.7500	3.4027	14.1000	29.7500	0.000
17.9558	29.7500	3.3966	171		
18.0063	29.7500	3.3991	2		
18.0619	29.7500	3.4102	13.5405	$0.000 \quad 0$	0.7448
18.1221	29.7500	3.4302	13.5405	29.7500	0.7448
18.1867	29.7500	3.4592			

2		
18.1760	0.000	3.2095
18.1760	29.7500	3.2095
19	1	
2		
17.8359	0.000	3.4397
17.8359	29.7500	3.4397
20	1	
2		
20.0546	0.000	8.1979
20.0546	29.7500	8.1979
21	1	
41		
21.3500	29.7500	-13.7000
15.0000	29.7500	-13.7000
10.000	29.7500	-13.7000
9.0000	29.7500	-13.7000
7.9500	29.7500	-13.7000
6.9500	29.7500	-13.2500
6.4500	29.7500	-12.9000
5.9000	29.7500	-12.3500
4.8000	29.7500	-11.0800
1.2000	29.7500	-6.6100
0.2000	29.7500	-5.1800
-0.3500	29.7500	-4.3000
-0.6800	29.7500	-3.7500
-0.9200	29.7500	-3.3500
-1.1800	29.7500	-2.7300
-1.3500	29.7500	-2.3500
-1.5000	29.7500	-1.9500
-1.6500	29.7500	-1.5500
-1.8600	29.7500	-1.0500
-2.0000	29.7500	-0.6200
-2.0600	29.7500	0.000
-2.0000	29.7500	0.6200
-1.8600	29.7500	1.0500
-1.6500	29.7500	1.5500
-1.5000	29.7500	1.9500
-1.3500	29.7500	2.3500
-1.1800	29.7500	2.7300
-0.9200	29.7500	3.3500
-0.6800	29.7500	3.7500
-0.3500	29.7500	4.3000
0.2000	29.7500	5.1800
1.2000	29.7500	6.6100
4.8000	29.7500	11.0800
5.9000	29.7500	12.3500
6.4500	29.7500	12.9000
6.9500	29.7500	13.2500
7.9500	29.7500	13.7000
9.0000	29.7500	13.7000
10.000	29.7500	13.7000
15.0000	29.7500	13.7000
21.3500	29.7500	13.7000
22	1	
41		
21.3500	30.000	-13.7000
15.0000	30.000	-13.7000
10.000	30.000	-13.7000

$\begin{array}{lll}9.0000 & 30.000 & -13.7000\end{array}$
$\begin{array}{llll}7.9500 & 30.000 & -13.7000\end{array}$
$\begin{array}{llll}6.9500 & 30.000 & -13.2500\end{array}$
$6.4500 \quad 30.000-12.9000$
$5.9000 \quad 30.000-12.3500$
$4.8000 \quad 30.000-11.0800$
$\begin{array}{llll}1.2000 & 30.000 & -6.6100\end{array}$
$\begin{array}{llll}0.2000 & 30.000 & -5.1800\end{array}$
$-0.3500 \quad 30.000-4.3000$
$-0.6800 \quad 30.000 \quad-3.7500$
$-0.9200 \quad 30.000 \quad-3.3500$
$-1.1800 \quad 30.000-2.7300$
$-1.3500 \quad 30.000 \quad-2.3500$
$-1.5000 \quad 30.000-1.9500$
$-1.6500 \quad 30.000-1.5500$
$-1.8600 \quad 30.000-1.0500$
$-2.0000 \quad 30.000-0.6200$
$\begin{array}{llll}-2.0600 & 30.000 & 0.000\end{array}$
$-2.0000 \quad 30.000 \quad 0.6200$
$\begin{array}{lll}-1.8600 & 30.000 & 1.0500\end{array}$
$\begin{array}{lll}-1.6500 & 30.000 & 1.5500\end{array}$
$\begin{array}{llll}-1.5000 & 30.000 & 1.9500\end{array}$
$-1.3500 \quad 30.000 \quad 2.3500$
$\begin{array}{lll}-1.1800 & 30.000 & 2.7300\end{array}$
$-0.9200 \quad 30.000 \quad 3.3500$
$\begin{array}{llll}-0.6800 & 30.000 & 3.7500\end{array}$
$-0.3500 \quad 30.000 \quad 4.3000$
$\begin{array}{llll}0.2000 & 30.000 & 5.1800\end{array}$
$1.2000 \quad 30.000 \quad 6.6100$
$4.8000 \quad 30.000 \quad 11.0800$
$\begin{array}{lll}5.9000 & 30.000 & 12.3500\end{array}$
$\begin{array}{lll}6.4500 & 30.000 & 12.9000\end{array}$
$\begin{array}{llll}6.9500 & 30.000 & 13.2500\end{array}$
$\begin{array}{llll}7.9500 & 30.000 & 13.7000\end{array}$
$\begin{array}{llll}9.0000 & 30.000 & 13.7000\end{array}$
$\begin{array}{llll}10.000 & 30.000 & 13.7000\end{array}$
$\begin{array}{llll}15.0000 & 30.000 & 13.7000\end{array}$
$21.3500 \quad 30.000 \quad 13.7000$
231
2
$\begin{array}{llll}21.3500 & 29.7500 & 13.7\end{array}$
$21.3500 \quad 29.7500-13.7$
241
2
$\begin{array}{llll}21.3500 & 30.000 & 13.7\end{array}$
$\begin{array}{llll}21.3500 & 30.000 & -13.7\end{array}$
251
2
$21.3500 \quad 29.7500 \quad 13.7$
$21.3500 \quad 30.000 \quad 13.7$
261
2
$\begin{array}{llll}21.3500 & 29.7500 & -13.7\end{array}$
$\begin{array}{llll}21.3500 & 30.000 & -13.7\end{array}$
Surfaces
11
22
-140.000 $0.000-260.000$
$380.000 \quad 0.000-260.000$
$-140.000 \quad 0.000 \quad 260.000$ $380.000 \quad 0.000 \quad 260.000$
21
2121
$-123.0000 \quad 0.000 \quad 0.000$
$-121.7700 \quad 0.000 \quad 24.5680$
$-116.8500 \quad 0.000 \quad 54.6612$
-107.0100 0.00087 .2439
$\begin{array}{lll}-89.7900 & 0.000 & 123.4354\end{array}$
$\begin{array}{llll}-68.8800 & 0.000 & 153.9419\end{array}$
-39.3600 $\quad 0.000 \quad 184.8124$
$-7.3800 \quad 0.000 \quad 208.6080$
$29.5200 \quad 0.000 \quad 227.5475$
$\begin{array}{llll}71.3400 & 0.000 & 240.5142\end{array}$
$123.0000 \quad 0.000 \quad 246.0000$
$\begin{array}{llll}174.6600 & 0.000 & 240.5142\end{array}$
$\begin{array}{llll}216.4800 & 0.000 & 227.5475\end{array}$
$\begin{array}{llll}253.3800 & 0.000 & 208.6080\end{array}$
$\begin{array}{llll}285.3600 & 0.000 & 184.8124\end{array}$
$314.8800 \quad 0.000 \quad 153.9419$
$335.7900 \quad 0.000 \quad 123.4354$
$353.0100 \quad 0.000 \quad 87.2439$
$362.8500 \quad 0.000 \quad 54.6612$
$367.7700 \quad 0.000 \quad 24.5680$
$369.0000 \quad 0.000 \quad 0.000$
$\begin{array}{llll}-123.0000 & 0.000 & 0.000\end{array}$
$-121.7700 \quad 3.8435 \quad 24.2679$
$-116.8500 \quad 8.551153 .9896$
$-107.010 \quad 13.647986 .1689$
$-89.790 \quad 19.3096 \quad 121.9151$
-68.880 $24.0818 \quad 152.0477$
$\begin{array}{llll}-39.360 & 28.9108 & 182.5369\end{array}$
$\begin{array}{llll}-7.3800 & 32.6334 & 206.0398\end{array}$
$29.5200 \quad 35.5961 \quad 224.7456$
$\begin{array}{llll}71.3400 & 37.6247 & 237.5524\end{array}$
$\begin{array}{llll}123.000 & 38.4828 & 242.9717\end{array}$
$\begin{array}{llll}174.660 & 37.6247 & 237.5524\end{array}$
$\begin{array}{llll}216.480 & 35.5961 & 224.7456\end{array}$
$\begin{array}{llll}253.380 & 32.6334 & 206.0398\end{array}$
$\begin{array}{llll}285.360 & 28.9108 & 182.5369\end{array}$
$314.880 \quad 24.0818 \quad 152.0477$
$335.790 \quad 19.3096 \quad 121.9151$
$353.0100 \quad 13.6479 \quad 86.1689$
$362.8500 \quad 8.5511 \quad 53.9896$
$367.7700 \quad 3.8435 \quad 24.2679$
$369.0000 \quad 0.000 \quad 0.000$
-123.0000 $0.000 \quad 0.000$
$-121.7700 \quad 7.5923 \quad 23.3675$
$-116.85016 .891651 .9872$
$-107.01026 .959782 .9733$
-89.7900 $38.1438 \quad 117.3937$
$-68.880 \quad 47.5706146 .4069$
$-39.360 \quad 57.1098 \quad 175.7670$
$\begin{array}{llll}-7.3800 & 64.4632 & 198.3965\end{array}$
$29.5200 \quad 70.3157 \quad 216.4087$
$\begin{array}{llll}71.3400 & 74.3230 & 228.7431\end{array}$
$\begin{array}{llll}123.000 & 76.0181 & 233.9608\end{array}$
$\begin{array}{llll}174.660 & 74.3230 & 228.7431\end{array}$
$\begin{array}{lll}216.480 & 70.3157 & 216.4087\end{array}$
$\begin{array}{llll}253.380 & 64.4632 & 198.3965\end{array}$ $\begin{array}{llll}285.360 & 57.1098 & 175.7670\end{array}$ $\begin{array}{llll}314.880 & 47.5706 & 146.4069\end{array}$ $335.790 \quad 38.1438 \quad 117.3937$ $353.0100 \quad 26.9597 \quad 82.9733$ $362.8500 \quad 16.8916 \quad 51.9872$ $367.7700 \quad 7.5923 \quad 23.3675$ $369.0000 \quad 0.000 \quad 0.000$ $\begin{array}{llll}-123.0000 & 0.000 & 0.000\end{array}$ $\begin{array}{lll}-121.770 & 11.1542 & 21.8915\end{array}$ $-116.85024 .816248 .7055$ -107.010 39.607677 .7335 $\begin{array}{llll}-89.790 & 56.0387 & 109.9817\end{array}$ $-68.880 \quad 69.8880 \quad 137.1622$ $\begin{array}{llll}-39.360 & 83.9025 & 164.6675\end{array}$ $-7.3800 \quad 94.7057185 .8702$ $29.520 \quad 103.3039 \quad 202.7458$ $\begin{array}{llll}71.340 & 109.1912 & 214.3004\end{array}$ $\begin{array}{llll}123.00 & 111.6816 & 219.1885\end{array}$ $174.660 \quad 109.1912 \quad 214.3004$ $216.480 \quad 103.3039 \quad 202.7458$ $253.380 \quad 94.7057 \quad 185.8702$ $285.360 \quad 83.9025 \quad 164.6675$ $314.880 \quad 69.8880 \quad 137.1622$ 335.79056 .0387109 .9817 $353.0100 \quad 39.6076 \quad 77.7335$ $362.8500 \quad 24.816248 .7055$ $367.7700 \quad 11.1542 \quad 21.8915$ $369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$\begin{array}{lll}-121.770 & 14.4414 & 19.8768\end{array}$
$-116.850 \quad 32.129744 .2234$
$-107.010 \quad 51.280370 .5823$ $-89.7900 \quad 72.5537 \quad 99.8612$ $-68.880 \quad 90.4846 \quad 124.5424$ $-39.360108 .6293149 .5163$ $\begin{array}{llll}-7.380 & 122.6163 & 168.7658\end{array}$ $\begin{array}{lll}29.520 & 133.7485 & 184.0892\end{array}$ $\begin{array}{llll}71.340 & 141.3708 & 194.5811\end{array}$ $123.000 \quad 144.5951 \quad 199.0189$ $174.660 \quad 141.3708 \quad 194.5811$ $216.480 \quad 133.7485 \quad 184.0892$ $253.380 \quad 122.6163168 .7658$ $285.360 \quad 108.6293149 .5163$ $314.880 \quad 90.4846 \quad 124.5424$ $335.7900 \quad 72.5537 \quad 99.8612$ $353.0100 \quad 51.2803 \quad 70.5823$ $362.8500 \quad 32.1297 \quad 44.2234$ $367.7700 \quad 14.4414 \quad 19.8768$ $369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$\begin{array}{llll}-121.770 & 17.3731 & 17.3725\end{array}$
$-116.85038 .652138 .6515$ $-107.01061 .690361 .6894$ $\begin{array}{llll}-89.7900 & 87.2823 & 87.2833\end{array}$ $-68.880108 .8532108 .8525$ $-39.360130 .6813130 .6826$ $-7.3800 \quad 147.5076 \quad 147.5090$ 29.5200160 .8997160 .8988
71.3400170 .0694170 .0696 $123.000 \quad 173.9482 \quad 173.9491$ $\begin{array}{llll}174.660 & 170.0694 & 170.0696\end{array}$ 216.480160 .8997160 .8988 $253.380 \quad 147.5076 \quad 147.5090$ 285.360130 .6813130 .6826 $314.880 \quad 108.8532 \quad 108.8525$ $335.7900 \quad 87.282387 .2833$ $353.0100 \quad 61.6903 \quad 61.6894$ $362.8500 \quad 38.6521 \quad 38.6515$ $367.7700 \quad 17.3731 \quad 17.3725$ $369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$-121.770 \quad 19.876914 .4427$
$-116.85044 .222832 .1301$
$-107.010 \quad 70.5813 \quad 51.2812$
$-89.7900 \quad 99.8617 \quad 72.5528$
-68.880 $124.5414 \quad 90.4837$
-39.360 $149.5154 \quad 108.6287$
$-7.3800168 .7669122 .6162$ $\begin{array}{llll}29.520 & 184.0890 & 133.7477\end{array}$
$\begin{array}{llll}71.340 & 194.5802 & 141.3713\end{array}$
$123.000199 .0181 \quad 144.5963$
$174.660 \quad 194.5802 \quad 141.3713$
$216.480 \quad 184.0890 \quad 133.7477$
$253.380 \quad 168.7669 \quad 122.6162$
$285.360 \quad 149.5154108 .6287$
$314.880 \quad 124.5414 \quad 90.4837$
$335.7900 \quad 99.8617 \quad 72.5528$
$353.0100 \quad 70.5813 \quad 51.2812$
$362.8500 \quad 44.2228 \quad 32.1301$
$367.7700 \quad 19.8769 \quad 14.4427$
$369.0000 \quad 0.000 \quad 0.000$
$\begin{array}{llll}-123.0000 & 0.000 & 0.000\end{array}$
$-121.77021 .891311 .1536$
-116.850 48.704524 .8165
$-107.010 \quad 77.7343 \quad 39.6085$
$-89.7900 \quad 109.9821 \quad 56.0388$
$-68.8800137 .1630 \quad 69.8886$
$-39.3600164 .6680 \quad 83.9032$
$-7.3800 \quad 185.8705 \quad 94.7051$
$29.5200 \quad 202.7455 \quad 103.3052$
$71.3400 \quad 214.2999109 .1920$
$123.000 \quad 219.1875111 .6815$
$174.660 \quad 214.2999 \quad 109.1920$
$216.480 \quad 202.7455 \quad 103.3052$
$253.380 \quad 185.8705 \quad 94.7051$
$\begin{array}{lll}285.360 & 164.6680 & 83.9032\end{array}$
$314.880 \quad 137.1630 \quad 69.8886$
$335.790 \quad 109.9821 \quad 56.0388$
$353.0100 \quad 77.7343 \quad 39.6085$
$362.8500 \quad 48.7045 \quad 24.8165$
$367.7700 \quad 21.8913 \quad 11.1536$
$369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$-121.7700 \quad 23.3667 \quad 7.5916$
$-116.850 \quad 51.987016 .8928$
$-107.010 \quad 82.9733 \quad 26.9591$
$-89.7900117 .394538 .1448$
-68.880 $146.4073 \quad 47.5715$ $-39.360 \quad 175.7660 \quad 57.1089$ $-7.3800 \quad 198.3974 \quad 64.4643$ $29.5200 \quad 216.4097 \quad 70.3166$ $\begin{array}{llll}71.3400 & 228.7428 & 74.3240\end{array}$ $\begin{array}{llll}123.000 & 233.9598 & 76.0189\end{array}$ $\begin{array}{lll}174.660 & 228.7428 & 74.3240\end{array}$ $216.480 \quad 216.4097 \quad 70.3166$ $253.380 \quad 198.3974 \quad 64.4643$ $\begin{array}{llll}285.360 & 175.7660 & 57.1089\end{array}$ $314.880 \quad 146.4073 \quad 47.5715$ $335.790 \quad 117.3945 \quad 38.1448$ $\begin{array}{llll}353.0100 & 82.9733 & 26.9591\end{array}$ $362.8500 \quad 51.9870 \quad 16.8928$ $367.7700 \quad 23.3667 \quad 7.5916$ $369.0000 \quad 0.000 \quad 0.000$ $-123.0000 \quad 0.000 \quad 0.000$ $\begin{array}{llll}-121.7700 & 24.2667 & 3.8425\end{array}$ $-116.850053 .98948 .5510$ $-107.010 \quad 86.1692 \quad 13.6481$ $-89.7900121 .916219 .3110$ $\begin{array}{lll}-68.880 & 152.0465 & 24.0809\end{array}$ $\begin{array}{llll}-39.360 & 182.5360 & 28.9099\end{array}$ $\begin{array}{lll}-7.3800 & 206.0391 & 32.6344\end{array}$ $29.5200 \quad 224.7452 \quad 35.5962$ $\begin{array}{llll}71.3400 & 237.5534 & 37.6257\end{array}$ $\begin{array}{llll}123.000 & 242.9713 & 38.4842\end{array}$ $\begin{array}{llll}174.660 & 237.5534 & 37.6257\end{array}$ $216.480 \quad 224.7452 \quad 35.5962$
$\begin{array}{lll}253.380 & 206.0391 & 32.6344\end{array}$
$\begin{array}{llll}285.360 & 182.5360 & 28.9099\end{array}$ $314.880 \quad 152.0465 \quad 24.0809$ $335.790 \quad 121.9162 \quad 19.3110$ $\begin{array}{llll}353.0100 & 86.1692 & 13.6481\end{array}$ $362.8500 \quad 53.98948 .5510$ $367.7700 \quad 24.2667 \quad 3.8425$ $369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$-121.7700 \quad 24.56920 .000$
$-116.8500 \quad 54.66240 .000$
$-107.0100 \quad 87.24330 .000$
$-89.7900 \quad 123.4359 \quad 0.000$
$\begin{array}{llll}-68.8800 & 153.9418 & 0.000\end{array}$
$-39.3600 \quad 184.81130 .000$
$-7.3800 \quad 208.6074 \quad 0.000$
$29.5200 \quad 227.5467 \quad 0.000$
$71.3400 \quad 240.5145 \quad 0.000$
$123.0000 \quad 246.0000 \quad 0.000$
$\begin{array}{llll}174.6600 & 240.5145 & 0.000\end{array}$
$\begin{array}{lll}216.4800 & 227.5467 & 0.000\end{array}$
$253.3800 \quad 208.6074 \quad 0.000$
$285.3600 \quad 184.8113 \quad 0.000$
$314.8800 \quad 153.9418 \quad 0.000$
$335.7900 \quad 123.4359 \quad 0.000$
$353.0100 \quad 87.2433 \quad 0.000$
$362.8500 \quad 54.6624 \quad 0.000$
$367.7700 \quad 24.5692 \quad 0.000$
$369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$\begin{array}{lll}-121.7700 & 24.2667 & -3.8425\end{array}$ $-116.8500 \quad 53.9894-8.5510$ $-107.010 \quad 86.1692-13.6481$ $-89.790 \quad 121.9162-19.3085$ -68.880 $152.0465-24.0809$ $\begin{array}{lll}-39.360 & 182.5360 & -28.9099\end{array}$ $-7.3800 \quad 206.0392-32.6319$ $\begin{array}{llll}29.520 & 224.7453 & -35.5962\end{array}$ $\begin{array}{llll}71.340 & 237.5535 & -37.6232\end{array}$ $\begin{array}{llll}123.00 & 242.9714 & -38.4818\end{array}$ $174.660 \quad 237.5535-37.6232$ $216.480-224.7453-35.5962$ 253.380 206.0392 -32.6319 $\begin{array}{llll}285.360 & 182.5360 & -28.9099\end{array}$ $314.880-152.0465-24.0809$ $335.790121 .9162-19.3085$ $353.010 \quad 86.1692-13.6481$ $362.8500 \quad 53.9894-8.5510$ $367.7700 \quad 24.2667-3.8425$ $369.0000 \quad 0.000 \quad 0.000$ $\begin{array}{lll}-123.0000 & 0.000 & 0.000\end{array}$ $-121.7700 \quad 23.3667-7.5916$ $-116.85051 .9871-16.8904$ $-107.010 \quad 82.9734-26.9591$ -89.790 117.3946-38.1448 $-68.880 \quad 146.4074-47.5715$ $-39.360 \quad 175.7661 \quad-57.1089$ $-7.3800 \quad 198.3975-64.4618$ $\begin{array}{llll}29.520 & 216.4099 & -70.3166\end{array}$ $\begin{array}{llll}71.340 & 228.7430 & -74.3215\end{array}$ $\begin{array}{llll}123.00 & 233.9600 & -76.0189\end{array}$ $\begin{array}{llll}174.66 & 228.7430 & -74.3215\end{array}$ $\begin{array}{llll}216.48 & 216.4099 & -70.3166\end{array}$ $253.38 \quad 198.3975-64.4618$ $285.36 \quad 175.7661-57.1089$ $314.88 \quad 146.4074-47.5715$ $335.79117 .3946-38.1448$ $\begin{array}{llll}353.01 & 82.9734 & -26.9591\end{array}$ $\begin{array}{llll}362.85 & 51.9871 & -16.8904\end{array}$ $367.77 \quad 23.3667-7.5916$ $369.00 \quad 0.000 \quad 0.000$ $-123.0000 \quad 0.000 \quad 0.000$ -121.77 $21.8914-11.1536$ $-116.8548 .7046-24.8165$ $-107.01 \quad 77.7345-39.6085$ $-89.790 \quad 109.9823-56.0388$ $-68.880 \quad 137.1632-69.8886$ $-39.360 \quad 164.6683-83.9032$ $-7.3800 \quad 185.8707-94.7051$ $29.520 \quad 202.7458-103.3028$ $71.340 \quad 214.3002-109.1920$ $\begin{array}{lll}123.0 & 219.1878 & -111.6815\end{array}$ 174.66 214.3002 -109.1920 216.48 202.7458 -103.3028 $253.38 \quad 185.8707-94.7051$ $\begin{array}{lll}285.36 & 164.6683 & -83.9032\end{array}$ $314.88 \quad 137.1632-69.8886$ $335.79 \quad 109.9823-56.0388$ $353.010 \quad 77.7345-39.6085$
$362.850 \quad 48.7046-24.8165$ $367.770 \quad 21.8914-11.1536$ $369.0000 \quad 0.000 \quad 0.000$ $-123.0000 \quad 0.000 \quad 0.000$
$\begin{array}{llll}-121.770 & 19.8770 & -14.4402\end{array}$
$-116.85044 .2229-32.1301$
$-107.010 \quad 70.5814-51.2812$
$-89.7900 \quad 99.8619-72.5528$
$-68.880 \quad 124.5417-90.4837$
$\begin{array}{lll}-39.36 & 149.5157 & -108.6287\end{array}$
$-7.380 \quad 168.7672-122.6162$
$29.520-184.0894-133.7477$
$\begin{array}{llll}71.340 & 194.5806 & -141.3713\end{array}$
$123.00 \quad 199.0184-144.5939$
$174.66 \quad 194.5806-141.3713$
216.48 184.0894-133.7477
$253.38 \quad 168.7672-122.6162$
$285.36149 .5157-108.6287$
$314.88 \quad 124.5417-90.4837$
$\begin{array}{llll}335.79 & 99.8619 & -72.5528\end{array}$
$353.010 \quad 70.5814-51.2812$
$\begin{array}{llll}362.850 & 44.2229 & -32.1301\end{array}$
$367.770 \quad 19.8770-14.4402$
$369.0000 \quad 0.000 \quad 0.000$
$\begin{array}{llll}-123.0000 & 0.000 & 0.000\end{array}$
$-121.770 \quad 17.3731-17.3725$
$-116.850 \quad 38.6522-38.6515$
$-107.010 \quad 61.6905 \quad-61.6894$
$-89.7900 \quad 87.2825-87.2833$
$-68.88108 .8535-108.8525$
-39.36 $130.6816-130.6801$
$-7.380 \quad 147.5080-147.5065$
$29.520 \quad 160.9001-160.8988$
$71.340 \quad 170.0698-170.0696$
$123.00 \quad 173.9486-173.9491$
$174.66170 .0698-170.0696$
$216.48 \quad 160.9001-160.8988$
$253.38 \quad 147.5080-147.5065$
$285.36130 .6816-130.6801$
$314.88 \quad 108.8535-108.8525$
$\begin{array}{llll}335.79 & 87.2825 & -87.2833\end{array}$
$353.010 \quad 61.6905-61.6894$
$\begin{array}{llll}362.850 & 38.6522 & -38.6515\end{array}$
$367.770 \quad 17.3731-17.3725$
$369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$-121.770 \quad 14.4415-19.8768$
$-116.850 \quad 32.1298 \quad-44.2234$
$-107.010 \quad 51.2805-70.5823$
$-89.7900 \quad 72.5540 \quad-99.8612$
-68.880 $90.4850-124.5424$
$-39.36 \quad 108.6297-149.5163$
$-7.380 \quad 122.6167-168.7658$
$29.520 \quad 133.7490-184.0892$
$\begin{array}{llll}71.340 & 141.3713 & -194.5811\end{array}$
$123.00144 .5956-199.0189$
$174.66 \quad 141.3713-194.5811$
$216.48 \quad 133.7490-184.0892$
$253.38 \quad 122.6167-168.7658$
$\begin{array}{lll}285.36 & 108.6297 & -149.5163\end{array}$ $314.88 \quad 90.4850-124.5424$ $335.790 \quad 72.5540-99.8612$ $353.010 \quad 51.2805-70.5823$ $\begin{array}{llll}362.850 & 32.1298 & -44.2234\end{array}$ $367.7700 \quad 14.4415-19.8768$ $369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$-121.770 \quad 11.1542-21.8915$
$-116.850 \quad 24.8163-48.7055$
$-107.010 \quad 39.6078$-77.7335
$-89.790 \quad 56.0390 \quad-109.9817$
-68.880 $69.8884-137.1622$
$\begin{array}{llll}-39.360 & 83.9030 & -164.6675\end{array}$
$-7.3800 \quad 94.7062-185.8702$
$29.52 \quad 103.3045-202.7458$
$\begin{array}{llll}71.34 & 109.1918 & -214.3004\end{array}$
$123.0 \quad 111.6822-219.1885$
$174.66 \quad 109.1918-214.3004$
$216.48 \quad 103.3045-202.7458$
$253.38 \quad 94.7062-185.8702$
$\begin{array}{llll}285.36 & 83.9030 & -164.6675\end{array}$
$314.88 \quad 69.8884-137.1622$
$\begin{array}{llll}335.79 & 56.0390 & -109.9817\end{array}$
$353.01 \quad 39.6078-77.7335$
$362.850 \quad 24.8163-48.7055$
$367.770 \quad 11.1542-21.8915$
$369.0000 \quad 0.000 \quad 0.000$
$\begin{array}{llll}-123.0000 & 0.000 & 0.000\end{array}$
$-121.7700 \quad 7.5924-23.3675$
$-116.850 \quad 16.8917-51.9872$
-107.010 $26.9599-82.9733$
$-89.790 \quad 38.1441 \quad-117.3937$
-68.880 $47.5710-146.4069$
-39.360 $57.1103-175.7670$
$-7.3800 \quad 64.4637-198.3965$
$\begin{array}{llll}29.520 & 70.3163 & -216.4087\end{array}$
$\begin{array}{llll}71.340 & 74.3236 & -228.7431\end{array}$
$\begin{array}{llll}123.00 & 76.0187 & -233.9608\end{array}$
$174.66 \quad 74.3236-228.7431$
$\begin{array}{llll}216.48 & 70.3163 & -216.4087\end{array}$
$\begin{array}{llll}253.38 & 64.4637 & -198.3965\end{array}$
$285.36 \quad 57.1103-175.7670$
$314.88 \quad 47.5710-146.4069$
$335.79 \quad 38.1441-117.3937$
$\begin{array}{llll}353.010 & 26.9599 & -82.9733\end{array}$
$362.850 \quad 16.8917-51.9872$
$367.7700 \quad 7.5924-23.3675$
$369.0000 \quad 0.000 \quad 0.000$
$\begin{array}{llll}-123.0000 & 0.000 & 0.000\end{array}$
-121.7700 $3.8435-24.2679$
$-116.8500 \quad 8.5512-53.9896$
$-107.010 \quad 13.6481-86.1689$
$-89.790 \quad 19.3099-121.9151$
-68.880 $24.0822-152.0452$
$\begin{array}{llll}-39.360 & 28.9113 & -182.5369\end{array}$
$-7.3800 \quad 32.6339-206.0398$
$\begin{array}{lll}29.520 & 35.5967 & -224.7456\end{array}$
$71.340 \quad 37.6254-237.5524$

123.003	38.4835	-242.9717	9.5000	$0.000 \quad 0$.	0.4324
174.66	37.6254	-237.5524	10.000	$0.000 \quad 0.3$	0.3359
216.48	35.5967	-224.7456	10.5000	0.000	0.2299
253.38	32.6339	-206.0398	11.0000	0.000	0.1166
285.36	28.9113	-182.5369	11.5000	0.000	0.000
314.88	24.0822	-152.0452	12.0000	0.000	-0.0946
335.79	19.3099	-121.9151	12.5000	0.000	-0.1530
353.010	13.6481	-86.1689	13.0000	0.000	-0.1589
362.8500	08.5512	$12-53.9896$	13.5000	0.000	-0.1024
367.7700	03.8435	-34.2679	14.0000	0.000	0.0251
369.0000	$0 \quad 0.000$	0.000	14.1000	0.000	0.000
-123.0000	000.000	00.000	0.000	29.7500	0.000
-121.7700	$00 \quad 0.000$	-24.5680	0.0355	29.7500	0.1008
-116.8500	$00 \quad 0.000$	-54.6612	0.0500	29.7500	0.1280
-107.0100	$00 \quad 0.000$	-87.2439	0.1250	29.7500	0.2295
-89.7900	0.000	-123.4354	0.1875	29.7500	0.2700
-68.8800	00.000	-153.9419	0.3438	29.7500	0.3338
-39.3600	0.000	-184.8124	0.5000	29.7500	0.3677
-7.3800	0.000	-208.6080	0.7500	29.7500	0.3750
29.5200	0.000	-227.5475	1.0000	29.7500	0.3969
71.3400	0.000	-240.5142	1.5000	29.7500	0.4207
123.0000	00.000	-246.0000	2.0000	29.7500	0.4431
174.6600	0.000	-240.5142	2.5000	29.7500	0.4654
216.4800	00.000	-227.5475	3.0000	29.7500	0.4892
253.3800	0.000	-208.6080	3.5000	29.7500	0.5135
285.3600	0.000	-184.8124	4.0000	29.7500	0.5392
314.8800	00.000	-153.9419	4.5000	29.7500	0.5639
335.7900	00.000	-123.4354	5.0000	29.7500	0.5880
353.0100	00.000	-87.2439	5.5000	29.7500	0.6091
362.8500	00.000	-54.6612	6.0000	29.7500	0.6275
367.7700	00.000	-24.5680	6.5000	29.7500	0.6417
369.0000	$0 \quad 0.000$	0.000	7.0000	29.7500	0.6471
31			7.5000	29.7500	0.6386
362			8.0000	29.7500	0.6120
$0.000 \quad 0.0$	$0.000 \quad 0.0$. 000	8.5000	29.7500	0.5693
0.03550	$0.000 \quad 0$	0.1008	9.0000	29.7500	0.5103
0.05000	$0.000 \quad 0$	0.1280	9.5000	29.7500	0.4324
0.12500	$0.000 \quad 0$	0.2295	10.000	29.7500	0.3359
0.18750	$0.000 \quad 0$.	0.2700	10.5000	29.7500	$00 \quad 0.2299$
0.34380	$0.000 \quad 0$	0.3338	11.0000	29.7500	000.1166
0.50000	$0.000 \quad 0$	0.3677	11.5000	29.7500	$00 \quad 0.000$
0.75000	$0.000 \quad 0$	0.3750	12.0000	29.7500	00-0.0946
1.00000	$0.000 \quad 0$	0.3969	12.5000	29.7500	$00-0.1530$
1.50000	$0.000 \quad 0$	0.4207	13.0000	29.7500	00-0.1589
2.00000	$0.000 \quad 0$	0.4431	13.5000	29.7500	00-0.1024
2.50000	$0.000 \quad 0$	0.4654	14.0000	29.7500	$00 \quad 0.0251$
3.00000	$0.000 \quad 0$	0.4892	14.1000	29.7500	$00 \quad 0.000$
3.50000	$0.000 \quad 0$	0.5135	41		
4.00000	$0.000 \quad 0$	0.5392	362		
4.50000	$0.000 \quad 0$	0.5639	0.000	$0.000 \quad 0.0$	0.000
5.00000	$0.000 \quad 0$.	0.5880	0.0355	$0.000-0$	-0.1650
5.50000	$0.000 \quad 0$	0.6091	0.0500	$0.000-0$	-0.2000
6.00000	$0.000 \quad 0$	0.6275	0.1250	$0.000-0$	-0.3438
6.50000	$0.000 \quad 0$.	0.6417	0.1875	$0.000-0$	-0.4375
7.00000	$0.000 \quad 0$.	0.6471	0.3438	0.000-0.6	-0.6560
7.50000	$0.000 \quad 0$.	0.6386	0.5000	$0.000-0$	-0.8073
8.00000	$0.000 \quad 0$	0.6120	0.7500	$0.000-1$.	-1.0500
8.50000	$0.000 \quad 0$	0.5693	1.0000	$0.000-1$	-1.2280
9.00000	$0.000 \quad 0$	0.5103	1.5000	$0.000-1$	-1.5251

2.0000	0.000	-1.7441	
2.5000	0.000	-1.9078	
3.0000	0.000	-2.0330	
3.5000	0.000	-2.1265	
4.0000	0.000	-2.1939	
4.5000	0.000	-2.2383	
5.0000	0.000	-2.2599	
5.5000	0.000	-2.2648	
6.0000	0.000	-2.2554	
6.5000	0.000	-2.2329	
7.0000	0.000	-2.1972	
7.5000	0.000	-2.1456	
8.0000	0.000	-2.0793	
8.5000	0.000	-1.9994	
9.0000	0.000	-1.9026	
9.5000	0.000	-1.7891	
10.000	0.000	-1.6611	
10.5000	0.000	-1.5153	
11.0000	0.000	-1.3543	
11.5000	0.000	-1.1782	
12.0000	0.000	-0.9868	
12.5000	0.000	-0.7811	
13.0000	0.000	-0.5588	
13.5000	0.000	-0.3248	
14.0000	0.000	-0.0699	
14.1000	0.000	0.000	
0.000	29.7500	0.000	
0.0355	29.7500	-0.1650	
0.0500	29.7500	-0.2000	
0.1250	29.7500	-0.3438	
0.1875	29.7500	-0.4375	
0.3438	29.7500	-0.6560	
0.5000	29.7500	-0.8073	
0.7500	29.7500	-1.0500	
1.0000	29.7500	-1.2280	
1.5000	29.7500	-1.5251	
2.0000	29.7500	-1.7441	
2.5000	29.7500	-1.9078	
3.0000	29.7500	-2.0330	
3.5000	29.7500	-2.1265	
4.0000	29.7500	-2.1939	
4.5000	29.7500	-2.2383	
5.0000	29.7500	-2.2599	
5.5000	29.7500	-2.2648	
6.0000	29.7500	-2.2554	
6.5000	29.7500	-2.2329	
7.0000	29.7500	-2.1972	
7.5000	29.7500	-2.1456	
8.0000	29.7500	-2.0793	
8.5000	29.7500	-1.9994	
9.0000	29.7500	-1.9026	
9.5000	29.7500	-1.7891	
10.000	29.7500	-1.6611	
10.5000	29.7500	-1.5153	
11.0000	29.7500	-1.3543	
11.5000	29.7500	-1.1782	
12.0000	29.7500	-0.9868	
12.5000	29.7500	-0.7811	
13.0000	29.7500	-0.5588	

13.5000	29.7500	-0.3248	13.5405	29.7500	0.7448
14.0000	29.7500	-0.0699	13.5428	29.7500	0.7860
14.1000	29.7500	0.000	13.5549	29.7500	0.8269
51			13.5766	29.7500	0.8673
542			13.6076	29.7500	0.9073
13.5405	0.000	0.7448	13.6475	29.7500	0.9468
13.5428	0.000	0.7860	13.6960	29.7500	0.9859
13.5549	0.000	0.8269	13.7525	29.7500	1.0247
13.5766	0.000	0.8673	13.8167	29.7500	1.0631
13.6076	0.000	0.9073	13.8880	29.7500	1.1013
13.6475	0.000	0.9468	13.9660	29.7500	01.1393
13.6960	0.000	0.9859	14.0503	29.7500	01.1774
13.7525	0.000	1.0247	14.1403	29.7500	1.2155
13.8167	0.000	1.0631	14.2355	29.7500	1.2540
13.8880	0.000	1.1013	14.3354	29.7500	1.2930
13.9660	0.000	1.1393	14.4398	29.7500	- 1.3326
14.0503	0.000	1.1774	14.5480	29.7500	-1.3732
14.1403	0.000	1.2155	14.6598	29.7500	0 1.4149
14.2355	0.000	1.2540	14.7746	29.7500	1.4581
14.3354	0.000	1.2930	14.8923	29.7500	- 1.5031
14.4398	0.000	1.3326	15.0123	29.7500	1.5501
14.5480	0.000	1.3732	15.1343	29.7500	1.5994
14.6598	0.000	1.4149	15.2581	29.7500	1.6513
14.7746	0.000	1.4581	15.3861	29.7500	- 1.7078
14.8923	0.000	1.5031	15.5197	29.7500	1.7688
15.0123	0.000	1.5501	15.6547	29.7500	0 1.8309
15.1343	0.000	1.5994	15.7906	29.7500	- 1.8938
15.2581	0.000	1.6513	15.9269	29.7500	1.9577
15.3861	0.000	1.7078	16.0631	29.7500	2.0225
15.5197	0.000	1.7688	16.1987	29.7500	2.0880
15.6547	0.000	1.8309	16.3332	29.7500	- 2.1541
15.7906	0.000	1.8938	16.4662	29.7500	2.2207
15.9269	0.000	1.9577	16.5971	29.7500	2.2876
16.0631	0.000	2.0225	16.7255	29.7500	2.3545
16.1987	0.000	2.0880	16.8509	29.7500	2.4211
16.3332	0.000	2.1541	16.9729	29.7500	2.4872
16.4662	0.000	2.2207	17.0911	29.7500	- 2.5524
16.5971	0.000	2.2876	17.2050	29.7500	2.6165
16.7255	0.000	2.3545	17.3142	29.7500	2.6790
16.8509	0.000	2.4211	17.4184	29.7500	2.7397
16.9729	0.000	2.4872	17.5171	29.7500	2.7980
17.0911	0.000	2.5524	17.6101	29.7500	2.8538
17.2050	0.000	2.6165	17.6970	29.7500	2.9066
17.3142	0.000	2.6790	17.7774	29.7500	2.9561
17.4184	0.000	2.7397	17.8512	29.7500	3.0020
17.5171	0.000	2.7980	17.9179	29.7500	3.0439
17.6101	0.000	2.8538	17.9774	29.7500	3.0816
17.6970	0.000	2.9066	18.0295	29.7500	3.1148
17.7774	0.000	2.9561	18.0739	29.7500	3.1433
17.8512	0.000	3.0020	18.1104	29.7500	3.1669
17.9179	0.000	3.0439	18.1390	29.7500	3.1854
17.9774	0.000	3.0816	18.1595	29.7500	3.1988
18.0295	0.000	3.1148	18.1719	29.7500	3.2068
18.0739	0.000	3.1433	18.1760	29.7500	3.2095
18.1104	0.000	3.1669	61		
18.1390	0.000	3.1854	542		
18.1595	0.000	3.1988	13.5405	$0.000 \quad 0$	0.7448
18.1719	0.000	3.2068	13.5483	$0.000 \quad 0$	0.7041
18.1760	0.000	3.2095	13.5664	$0.000 \quad 0$	0.6653

13.5948	0.000	0.6285
13.6336	0.000	0.5938
13.6826	0.000	0.5617
13.7418	0.000	0.5324
13.8110	0.000	0.5064
13.8898	0.000	0.4841
13.9779	0.000	0.4660
14.0748	0.000	0.4527
14.1800	0.000	0.4447
14.2930	0.000	0.4425
14.4130	0.000	0.4465
14.5394	0.000	0.4574
14.6714	0.000	0.4754
14.8081	0.000	0.5010
14.9486	0.000	0.5345
15.0921	0.000	0.5760
15.2376	0.000	0.6258
15.3843	0.000	0.6838
15.5312	0.000	0.7499
15.6774	0.000	0.8241
15.8192	0.000	0.9045
15.9552	0.000	0.9887
16.0900	0.000	1.0773
16.2233	0.000	1.1698
16.3544	0.000	1.2657
16.4830	0.000	1.3645
16.6087	0.000	1.4658
16.7310	0.000	1.5689
16.8496	0.000	1.6733
16.9643	0.000	1.7785
17.0747	0.000	1.8838
17.1805	0.000	1.9888
17.2816	0.000	2.0927
17.3777	0.000	2.1952
17.4687	0.000	2.2955
17.5544	0.000	2.3931
17.6348	0.000	2.4874
17.7097	0.000	2.5780
17.7790	0.000	2.6643
17.8428	0.000	2.7458
17.9009	0.000	2.8220
17.9535	0.000	2.8924
18.0004	0.000	2.9567
18.0417	0.000	3.0144
18.0775	0.000	3.0651
18.1076	0.000	3.1086
18.1323	0.000	3.1446
18.1514	0.000	3.1729
18.1651	0.000	3.1932
18.1733	0.000	3.2054
18.1760	0.000	3.2095
13.5405	29.7500	0.7448
13.5483	29.7500	0.7041
13.5664	29.7500	0.6653
13.5948	29.7500	0.6285
13.6336	29.7500	0.5938
13.6826	29.7500	0.5617
13.7418	29.7500	0.5324
13.8110	29.7500	0.5064

13.8898	$29.7500 \quad 0.4841$	17.8647	0.000	4.0882
13.9779	$29.7500 \quad 0.4660$	17.8992	0.000	4.1770
14.0748	$29.7500 \quad 0.4527$	17.9376	0.000	4.2700
14.1800	$29.7500 \quad 0.4447$	17.9797	0.000	4.3670
14.2930	$29.7500 \quad 0.4425$	18.0250	0.000	4.4677
14.4130	$29.7500 \quad 0.4465$	18.0732	0.000	4.5722
14.5394	$29.7500 \quad 0.4574$	18.1239	0.000	4.6802
14.6714	$29.7500 \quad 0.4754$	18.1766	0.000	4.7918
14.8081	$29.7500 \quad 0.5010$	18.2314	0.000	4.9077
14.9486	$29.7500 \quad 0.5345$	18.2905	0.000	5.0334
15.0921	$29.7500 \quad 0.5760$	18.3530	0.000	5.1628
15.2376	29.75000 .6258	18.4185	0.000	5.2941
15.3843	29.75000 .6838	18.4864	0.000	5.4270
15.5312	29.75000 .7499	18.5565	0.000	5.5611
15.6774	$29.7500 \quad 0.8241$	18.6283	0.000	5.6960
15.8192	$29.7500 \quad 0.9045$	18.7015	0.000	5.8314
15.9552	$29.7500 \quad 0.9887$	18.7757	0.000	5.9669
16.0900	29.75001 .0773	18.8505	0.000	6.1020
16.2233	29.75001 .1698	18.9255	0.000	6.2363
16.3544	29.75001 .2657	19.0004	0.000	6.3694
16.4830	29.75001 .3645	19.0748	0.000	6.5010
16.6087	29.75001 .4658	19.1485	0.000	6.6305
16.7310	29.75001 .5689	19.2209	0.000	6.7576
16.8496	29.75001 .6733	19.2920	0.000	6.8818
16.9643	29.75001 .7785	19.3613	0.000	7.0027
17.0747	29.75001 .8838	19.4286	0.000	7.1198
17.1805	29.75001 .9888	19.4936	0.000	7.2328
17.2816	29.75002 .0927	19.5561	0.000	7.3412
17.3777	29.75002 .1952	19.6159	0.000	7.4447
17.4687	29.75002 .2955	19.6726	0.000	7.5428
17.5544	29.75002 .3931	19.7262	0.000	7.6353
17.6348	29.75002 .4874	19.7763	0.000	7.7217
17.7097	29.75002 .5780	19.8228	0.000	7.8017
17.7790	29.75002 .6643	19.8655	0.000	7.8750
17.8428	29.75002 .7458	19.9042	0.000	7.9414
17.9009	29.75002 .8220	19.9388	0.000	8.0005
17.9535	29.75002 .8924	19.9691	0.000	8.0523
18.0004	29.75002 .9567	19.9950	0.000	8.0964
18.0417	29.75003 .0144	20.0163	0.000	8.1328
18.0775	29.75003 .0651	20.0330	0.000	8.1612
18.1076	29.75003 .1086	20.0450	0.000	8.1815
18.1323	29.75003 .1446	20.0522	0.000	8.1938
18.1514	29.75003 .1729	20.0546	0.000	8.1979
18.1651	29.75003 .1932	17.8359	29.7500	0 3.4397
18.1733	29.75003 .2054	17.8074	29.7500	3.4697
18.1760	29.75003 .2095	17.7857	29.7500	3.5061
71		17.7707	29.7500	3.5487
542		17.7621	29.7500	3.5973
17.8359	0.0003 .4397	17.7599	29.7500	3.6518
17.8074	0.0003 .4697	17.7637	29.7500	3.7119
17.7857	$0.000 \quad 3.5061$	17.7734	29.7500	3.7774
17.7707	0.0003 .5487	17.7886	29.7500	3.8479
17.7621	0.0003 .5973	17.8091	29.7500	3.9234
17.7599	0.0003 .6518	17.8346	29.7500	4.0035
17.7637	0.0003 .7119	17.8647	29.7500	4.0882
17.7734	0.0003 .7774	17.8992	29.7500	4.1770
17.7886	0.0003 .8479	17.9376	29.7500	4.2700
17.8091	0.0003 .9234	17.9797	29.7500	4.3670
17.8346	0.0004 .0035	18.0250	29.7500	4.4677

18.0732	29.7500	4.5722
18.1239	29.7500	4.6802
18.1766	29.7500	4.7918
18.2314	29.7500	4.9077
18.2905	29.7500	5.0334
18.3530	29.7500	5.1628
18.4185	29.7500	5.2941
18.4864	29.7500	5.4270
18.5565	29.7500	5.5611
18.6283	29.7500	5.6960
18.7015	29.7500	5.8314
18.7757	29.7500	5.9669
18.8505	29.7500	6.1020
18.9255	29.7500	6.2363
19.0004	29.7500	6.3694
19.0748	29.7500	6.5010
19.1485	29.7500	6.6305
19.2209	29.7500	6.7576
19.2920	29.7500	6.8818
19.3613	29.7500	7.0027
19.4286	29.7500	7.1198
19.4936	29.7500	7.2328
19.5561	29.7500	7.3412
19.6159	29.7500	7.4447
19.6726	29.7500	7.5428
19.7262	29.7500	7.6353
19.7763	29.7500	7.7217
19.8228	29.7500	7.8017
19.8655	29.7500	7.8750
19.9042	29.7500	7.9414
19.9388	29.7500	8.0005
19.9691	29.7500	8.0523
19.9950	29.7500	8.0964
20.0163	29.7500	8.1328
20.0330	29.7500	8.1612
20.0450	29.7500	8.1815
20.0522	29.7500	8.1938
20.0546	29.7500	8.1979
8	1	
2		
54		
17.8359	0.000	3.4397
17.8704	0.000	3.4171
17.9104	0.000	3.4027
17.9558	0.000	3.3966
18.0063	0.000	3.3991
18.0619	0.000	3.4102
18.1221	0.000	3.4302
18.1867	0.000	3.4592
18.2551	0.000	3.4973
18.3268	0.000	3.5445
18.4013	0.000	3.6010
18.4780	0.000	3.6668
18.5561	0.000	3.7417
18.6349	0.000	3.8258
18.7138	0.000	3.9188
18.7921	0.000	4.0205
18.8690	0.000	4.1306
18.9439	0.000	4.2487
19.0161	0.000	4.3744

19.0846	0.0004 .5065	19.3747	29.7500	5.2022
19.1466	0.0004 .6385	19.4270	29.7500	5.3503
19.2062	0.0004 .7740	19.4772	29.7500	5.5001
19.2642	0.0004 .9135	19.5253	29.7500	5.6509
19.3204	$0.000 \quad 5.0564$	19.5712	29.7500	5.8023
19.3747	0.0005 .2022	19.6149	29.7500	5.9535
19.4270	0.0005 .3503	19.6564	29.7500	6.1040
19.4772	0.0005 .5001	19.6956	29.7500	6.2531
19.5253	0.0005 .6509	19.7325	29.7500	6.4004
19.5712	0.0005 .8023	19.7671	29.7500	6.5452
19.6149	0.0005 .9535	19.7995	29.7500	6.6870
19.6564	0.0006 .1040	19.8296	29.7500	6.8252
19.6956	$0.000 \quad 6.2531$	19.8576	29.7500	6.9592
19.7325	0.0006 .4004	19.8833	29.7500	7.0887
19.7671	0.0006 .5452	19.9069	29.7500	7.2130
19.7995	0.0006 .6870	19.9284	29.7500	7.3317
19.8296	0.0006 .8252	19.9479	29.7500	7.4443
19.8576	0.0006 .9592	19.9654	29.7500	7.5505
19.8833	0.0007 .0887	19.9811	29.7500	7.6497
19.9069	0.0007 .2130	19.9950	29.7500	7.7417
19.9284	0.0007 .3317	20.0072	29.7500	7.8261
19.9479	0.0007 .4443	20.0178	29.7500	7.9024
19.9654	0.0007 .5505	20.0269	29.7500	7.9705
19.9811	0.0007 .6497	20.0345	29.7500	8.0301
19.9950	0.0007 .7417	20.0408	29.7500	8.0809
20.0072	0.0007 .8261	20.0459	29.7500	8.1228
20.0178	0.0007 .9024	20.0497	29.7500	8.1555
20.0269	0.0007 .9705	20.0524	29.7500	8.1790
20.0345	0.0008 .0301	20.0541	29.7500	8.1931
20.0408	0.0008 .0809	20.0546	29.7500	8.1979
20.0459	0.0008 .1228	91		
20.0497	0.0008 .1555	22		
20.0524	0.0008 .1790	-30.000	29.7500	-30.000
20.0541	0.0008 .1931	30.000	29.7500	-30.000
20.0546	0.0008 .1979	-30.000	29.7500	30.000
17.8359	29.75003 .4397	30.000	29.7500	30.000
17.8704	29.75003 .4171	101		
17.9104	29.75003 .4027	22		
17.9558	29.75003 .3966	-30.000	30.000	-30.000
18.0063	29.75003 .3991	30.000	30.000	-30.000
18.0619	29.75003 .4102	-30.000	30.000	30.000
18.1221	29.75003 .4302	30.000	30.000	30.000
18.1867	29.75003 .4592	111		
18.2551	29.75003 .4973	22		
18.3268	29.75003 .5445	21.3500	29.7500	-13.7000
18.4013	29.75003 .6010	21.3500	30.000	-13.7000
18.4780	29.75003 .6668	21.3500	29.7500	13.7000
18.5561	29.75003 .7417	21.3500	30.000	13.7000
18.6349	29.75003 .8258	121		
18.7138	29.75003 .9188	412		
18.7921	29.75004 .0205	21.3500	29.7500	-13.7000
18.8690	29.75004 .1306	15.0000	29.7500	-13.7000
18.9439	29.75004 .2487	10.000	29.7500	-13.7000
19.0161	29.75004 .3744	9.0000	29.7500	-13.7000
19.0846	29.75004 .5065	7.9500	29.7500	-13.7000
19.1466	29.75004 .6385	6.9500	29.7500	-13.2500
19.2062	29.75004 .7740	6.4500	29.7500	-12.9000
19.2642	29.75004 .9135	5.9000	29.7500	-12.3500
19.3204	29.75005 .0564	4.8000	29.7500	-11.0800

1.2000	29.7500	-6.6100
0.2000	29.7500	-5.1800
-0.3500	29.7500	-4.3000
-0.6800	29.7500	-3.7500
-0.9200	29.7500	-3.3500
-1.1800	29.7500	-2.7300
-1.3500	29.7500	-2.3500
-1.5000	29.7500	-1.9500
-1.6500	29.7500	-1.5500
-1.8600	29.7500	-1.0500
-2.0000	29.7500	-0.6200
-2.0600	29.7500	0.000
-2.0000	29.7500	0.6200
-1.8600	29.7500	1.0500
-1.6500	29.7500	1.5500
-1.5000	29.7500	1.9500
-1.3500	29.7500	2.3500
-1.1800	29.7500	2.7300
-0.9200	29.7500	3.3500
-0.6800	29.7500	3.7500
-0.3500	29.7500	4.3000
0.2000	29.7500	5.1800
1.2000	29.7500	6.6100
4.8000	29.7500	11.0800
5.9000	29.7500	12.3500
6.4500	29.7500	12.9000
6.9500	29.7500	13.2500
7.9500	29.7500	13.7000
9.0000	29.7500	13.7000
10.000	29.7500	13.7000
15.0000	29.7500	13.7000
21.3500	29.7500	13.7000
21.3500	30.000	-13.7000
15.0000	30.000	-13.7000
10.000	30.000	-13.7000
9.0000	30.000	-13.7000
7.9500	30.000	-13.7000
6.9500	30.000	-13.2500
6.4500	30.000	-12.9000
5.9000	30.000	-12.3500
4.8000	30.000	-11.0800
1.2000	30.000	-6.6100
0.2000	30.000	-5.1800
-0.3500	30.000	-4.3000
-0.6800	30.000	-3.7500
-0.9200	30.000	-3.3500
-1.1800	30.000	-2.7300
-1.3500	30.000	-2.3500
-1.5000	30.000	-1.9500
-1.6500	30.000	-1.5500
-1.8600	30.000	-1.0500
-2.0000	30.000	-0.6200
-2.0600	30.000	0.000
-2.0000	30.000	0.6200
-1.8600	30.000	1.0500
-1.6500	30.000	1.5500
-1.5000	30.000	1.9500
-1.3500	30.000	2.3500
-1.1800	30.000	2.7300

```
-0.9200 30.000 3.3500
-0.6800 30.000 3.7500
-0.3500 30.000 4.3000
0.2000 30.000 5.1800
1.2000 30.000 6.6100
4.8000}30.000 11.080
5.9000 30.000 12.3500
6.4500 30.000 12.9000
6.9500 30.000 13.2500
7.9500 30.000 13.7000
9.0000 30.000 13.7000
10.000}330.000 13.700
15.0000 30.000 13.7000
21.3500 30.000 13.7000
Mesh generation
26 12
Curves segments
1 1 1
2 2 1
3 3 1
4 1
5 5 1
6 6 1
7 7 1
8 1
9 9 1
10}10\quad
11 11 1
12 12 1
13 13 1
14 14 1
15 15 1
16 16 1
17 17 1
18 18 1
19 19 1
20 20 1
21 21 1
22 22 1
23 23 1
24 24 1
25 25 1
26 26 1
Surface Regions
1 1 1
8
1 (-2 
2 1
2
1 2
3 3 1
4
15}3316\quad
4 4 1
4
```

```
15}101016
```

15}101016
5 5 1
5 5 1
4
4
17 5
17 5
6 6 1
6 6 1
4
4
17}1212\quad18\quad
17}1212\quad18\quad
7 7 1
7 7 1
4
4
19 7 20 13
19 7 20 13
8 1
8 1
4
4
19 14 20 8
19 14 20 8
9 9 1
9 9 1
8
8
21 23 9 -10 11 -12 13-14
21 23 9 -10 11 -12 13-14
10 10 1
10 10 1
2
2
22 24
22 24
11 11 1
11 11 1
4
4
23}226\quad24\quad2
23}226\quad24\quad2
12 12 1
12 12 1
4
4
21 25 -22 -26

```
21 25 -22 -26
```


APPENDIX A-2

STARS-CFD Background Mesh Data File (fin.bac)

```
Background Mesh....fin
4 1 0 0 7
1 -1800 -100 -2400
        1 0 0 20
    0}11002
    0 0 1 20
2 1800 -100 -2400
        1 0 0 20
        0}11002
        0 0 1 20
3 0 -100 2400
        1 0 0 20
        0}10<0<2
        0 0 1 20
4 0 2400 0
        1 0 0 20
        0}11002
        0}00112
    1 1 2 3 4
    * Point Sources
    * Line Sources
    * Triangle Sources
    1. Source for fin 1
0.000
0.000}3030.000 0.000 0.4 0.8 3-1
14.10000
2. Source for fin 1
14.10000
0.000}3030.000 0.000 0.4 0.8 3-8
14.10000}30.000 0.000 0.4 0.8 3-1
3. Source for fin 2
13.54051}00.000 0.74475 0.4 0.8 3-1
13.54051}30.000 0.74475 0.4 0.8 3-1
18.17598
```

```
4. Source for fin 2
18.17598}00.000 3.20948 0.4 0.8 3-1
13.54051}30.000 0.74475 0.4 0.8 3-1
18.17598}330.000 3.20948 0.4 0.8 3-1
5. Source for fin 3
17.83585
17.83585}30.000 3.43973 0.4 0.8 3-1
20.05219}00.000 8.19376 0.4 0.8 3-1
6. Source for fin 3
20.05219}0.000 8.19376 0.4 0.8 3-1
17.83585}30.000 3.43973 0.4 0.8 3-8
20.05219}330.000 8.19376 0.4 0.8 3-1
7. Source for endplate
21.00000 30.000 13.0000}00.
21.00000 30.000
-2.00000 30.000
```


APPENDIX A-3

STARS-CFD Boundary Conditions Data File (fin.bco)

Fin Boundary Condition File	17	0
12	26	18
Surface Regions	1	
1	2	19
2	3	20
3	1	1
4	1	21
5	1	1
6	1	22
7	1	1
8	1	24
9	1	1
10	1	25
11	1	1
12	1	26
Curve Segments		
1	0	
2	0	
3	4	
4	4	
5	4	
6	4	
7	4	
8	4	
9	4	
10	4	
11	4	
12	4	
13	4	
14	4	
15	0	
16	1	

APPENDIX A-4

STARS-CFD Parameter Control File (fin.cons)

```
&control
    nout = 50,
    nstep = 1,
    ncycl = 5000,
    nstpe =20,
    cfl = 0.3,
    nsmth =0,
    smofc =0.2,
    relax = 1.0,
    mach = 0.434,
    alpha =0.0,
    beta =0.0,
    restart = 0,
    amplitude= 1.0,
/
```


APPENDIX B-1

STARS-CFD Geometry Data File (boxwing.sur)

1 Geometry definition...felisa boxwing 26 Curves		
1		
21		
-123.0000	0.000	0.000
-121.7700	0.000	24.5680
-116.8500	0.000	54.6612
-107.0100	0.000	87.2439
-89.7900	0.000	123.4354
-68.8800	0.000	153.9419
-39.3600	0.000	184.8124
-7.3800	0.000	208.6080
29.5200	0.000	227.5475
71.3400	0.000	240.5142
123.0000	0.000	246.0000
174.6600	0.000	240.5142
216.4800	0.000	227.5475
253.3800	0.000	208.6080
285.3600	0.000	184.8124
314.8800	0.000	153.9419
335.7900	0.000	123.4354
353.0100	0.000	87.2439
362.8500	0.000	54.6612
367.7700	0.000	24.5680
369.0000	0.000	0.000
2	1	
21		
-123.0000	0.000	0.000
-121.7700	0.000	-24.5680
-116.8500	0.000	-54.6612
-107.0100	0.000	-87.2439
-89.7900	0.000	-123.4354
-68.8800	0.000	-153.9419
-39.3600	0.000	-184.8124
-7.3800	0.000	-208.6080
29.5200	0.000	-227.5475
71.3400	0.000	-240.5142
123.0000	0.000	-246.0000
174.6600	0.000	-240.5142
216.4800	0.000	-227.5475
253.3800	0.000	-208.6080
285.3600	0.000	-184.8124

314.8800	0.000	-153.9419
335.7900	0.000	-123.4354
353.0100	0.000	-87.2439
362.8500	0.000	-54.6612
367.7700	0.000	-24.5680
369.0000	0.000	0.000
3	1	
36		
36		
100.000625	0.000	-0.02225
100.0055	0.000	0.070125
100.033	0.000	0.140000
100.098625	0.0000	0.178375
100.21475	0.000	0.193750
100.37575	0.000	0.198000
100.578375	0.0000	0.191500
100.820125	0.0000	0.175500
101.098375	0.0000	0.150250
101.41025	0.000	0.115625
101.7525	0.000	0.070375
102.12575	0.000	0.009375
102.53475	0.0000	-0.066875
102.98	0.000	-0.151625
103.459125	0.0000	-0.241000
103.96875	0.0000	-0.331500
104.5055	0.000	-0.419750
105.064875	0.000	-0.502625
105.642375	0.000	-0.577250
106.2325	0.000	-0.641125
106.829875	0.000	-0.691750
107.4285	0.000	-0.727500
108.022	0.000	-0.747000
108.604	0.000	-0.749250
109.168	0.000	-0.734000
109.7075	0.000	-0.701500
110.216125	0.000	-0.652375
110.6875	0.000	-0.588250
111.116	0.000	-0.511000
111.49575	0.000	-0.423375
111.821625	0.000	-0.328000
112.086625	0.000	-0.227750
112.281875	0.000	-0.132500
112.4085	0.000	-0.058500
112.478125	0.000	-0.014375
112.5	0.000	0.000
1		

4	1	
46		
100.000625	0.000	-0.022250
100.019375	0.000	-0.129125
100.061875	0.000	-0.246125
100.1285	0.000	-0.369250
100.219375	0.000	-0.495125
100.33675	0.000	-0.620750
100.481875	0.000	-0.746000
100.652875	0.000	-0.870625
100.848625	0.000	-0.992500
101.068125	0.000	-1.109875
101.31025	0.000	-1.221250
101.573875	0.000	-1.324750
101.857875	0.000	-1.419375
102.16075	0.000	-1.503250
102.48075	0.000	-1.574250
102.817625	0.000	-1.629625
103.17125	0.000	-1.668250
103.543375	0.000	-1.688125
103.936	0.000	-1.690750
104.347125	0.000	-1.680875
104.774125	0.000	-1.658875
105.215125	0.000	-1.626375
105.6675	0.000	-1.585375
106.128125	0.000	-1.537875
106.593	0.000	-1.485125
107.058125	0.000	-1.428125
107.51975	0.000	-1.366875
107.97475	0.000	-1.301500
108.42	0.000	-1.232375
108.852875	0.000	-1.159625
109.27075	0.000	-1.083875
109.671125	0.000	-1.005500
110.0515	0.000	-0.925250
110.409625	0.000	-0.843625
110.743375	0.000	-0.761125
111.05075	0.000	-0.678375
111.330125	0.000	-0.596000
111.579875	0.000	-0.514500
111.798625	0.000	-0.434500
111.9855	0.000	-0.356625
112.138875	0.000	-0.281250
112.259375	0.000	-0.205750
10		

$\begin{array}{lll}112.353125 & 0.000 & -0.129625\end{array}$ $112.4271250 .000-0.061750$ $112.479750 .000-0.015750$ $112.50 .000 \quad 0.000$
51
36
$112.5006250 .000 \quad 12.477750$
$112.5055 \quad 0.000 \quad 12.570125$
$112.533 \quad 0.000 \quad 12.640000$
$112.5986250 .000 \quad 12.678375$ $112.71475 \quad 0.000 \quad 12.693750$ $112.87575 \quad 0.000 \quad 12.698000$ $113.078375 \quad 0.000 \quad 12.691500$ $113.3201250 .000 \quad 12.675500$ $113.5983750 .000 \quad 12.650250$ $113.91025 \quad 0.000 \quad 12.615625$ $114.2525 \quad 0.000 \quad 12.570375$ $114.625750 .000 \quad 12.509375$ $115.03475 \quad 0.000 \quad 12.433125$ $115.48 \quad 0.000 \quad 12.348375$ $115.959125 \quad 0.000 \quad 12.259000$ $116.46875 \quad 0.000 \quad 12.168500$ $117.0055 \quad 0.000 \quad 12.080250$ $117.5648750 .000 \quad 11.997375$ $118.1423750 .000 \quad 11.922750$ $118.7325 \quad 0.000 \quad 11.858875$ $119.3298750 .000 \quad 11.808250$ $119.92850 .000 \quad 11.772500$ $\begin{array}{lll}120.522 & 0.000 & 11.753000\end{array}$ $121.104 \quad 0.000 \quad 11.750750$ $121.668 \quad 0.000 \quad 11.766000$ $122.2075 \quad 0.000 \quad 11.798500$ $122.716125 \quad 0.000 \quad 11.847625$ $123.1875 \quad 0.000 \quad 11.911750$ $123.616 \quad 0.000 \quad 11.989000$ $\begin{array}{llll}123.99575 & 0.000 & 12.076625\end{array}$ $\begin{array}{llll}124.321625 & 0.000 & 12.172000\end{array}$ $\begin{array}{llll}124.586625 & 0.000 & 12.272250\end{array}$ $124.7818750 .000 \quad 12.367500$ $124.9085 \quad 0.000 \quad 12.441500$ $124.978125 \quad 0.000 \quad 12.485625$ $125 \quad 0.000 \quad 12.500000$ 61
46
$112.500625 \quad 0.000 \quad 12.477750$ $112.5193750 .000 \quad 12.370875$ $112.5618750 .000 \quad 12.253875$ $112.6285 \quad 0.000 \quad 12.130750$ $112.719375 \quad 0.000 \quad 12.004875$ $\begin{array}{llll}112.83675 & 0.000 & 11.879250\end{array}$ $112.9818750 .000 \quad 11.754000$ $113.1528750 .000 \quad 11.629375$ $113.3486250 .000 \quad 11.507500$ $113.5681250 .000 \quad 11.390125$ $113.81025 \quad 0.000 \quad 11.278750$ $114.0738750 .000 \quad 11.175250$ $114.3578750 .000 \quad 11.080625$ $\begin{array}{lll}114.66075 & 0.000 & 10.996750\end{array}$ $114.98075 \quad 0.000 \quad 10.925750$
$115.317625 \quad 0.000 \quad 10.870375$ $\begin{array}{llll}115.67125 & 0.000 & 10.831750\end{array}$ $116.0433750 .000 \quad 10.811875$ $116.436 \quad 0.000 \quad 10.809250$ $\begin{array}{llll}116.847125 & 0.000 & 10.819125\end{array}$ $117.2741250 .000 \quad 10.841125$ $117.7151250 .000 \quad 10.873625$ $118.16750 .000 \quad 10.914625$ $118.628125 \quad 0.000 \quad 10.962125$ $119.093 \quad 0.000 \quad 11.014875$ $119.5581250 .000 \quad 11.071875$ $120.01975 \quad 0.000 \quad 11.133125$ $120.47475 \quad 0.000 \quad 11.198500$ $120.92 \quad 0.000 \quad 11.267625$ $121.3528750 .000 \quad 11.340375$ $121.77075 \quad 0.000 \quad 11.416125$ $122.1711250 .000 \quad 11.494500$ $122.5515 \quad 0.000 \quad 11.574750$ $122.9096250 .000 \quad 11.656375$ $123.2433750 .000 \quad 11.738875$ $\begin{array}{llll}123.55075 & 0.000 & 11.821625\end{array}$ $123.8301250 .000 \quad 11.904000$ $124.079875 \quad 0.000 \quad 11.985500$ $124.2986250 .000 \quad 12.065500$ $124.4855 \quad 0.000 \quad 12.143375$ $124.6388750 .000 \quad 12.218750$ $\begin{array}{llll}124.759375 & 0.000 & 12.294250\end{array}$ $124.8531250 .000 \quad 12.370375$ $124.927125 \quad 0.000 \quad 12.438250$ $124.97975 \quad 0.000 \quad 12.484250$ $125 \quad 0.000 \quad 12.500000$ 71
36
$100.000625-29.7500-0.02225$ $100.0055 \quad 29.7500 \quad 0.070125$ $100.03329 .75000 \quad 0.140000$ $100.098625 \quad 29.750 \quad 0.178375$ $\begin{array}{lll}100.21475 & 29.750 & 0.193750\end{array}$ $100.37575 \quad 29.750 \quad 0.198000$ $100.57837529 .750 \quad 0.191500$ $100.820125 \quad 29.750 \quad 0.175500$ $101.09837529 .750 \quad 0.150250$ $101.41025 \quad 29.750 \quad 0.115625$ $101.7525 \quad 29.750 \quad 0.070375$ $102.12575 \quad 29.750 \quad 0.009375$ $102.53475 \quad 29.750-0.066875$ $102.98 \quad 29.750 \quad-0.151625$ $103.45912529 .750-0.24100$ $103.96875 \quad 29.750-0.331500$ $104.5055 \quad 29.750-0.419750$ $105.06487529 .750-0.502625$ $105.642375-29.750-0.577250$ $106.2325 \quad 29.750-0.641125$ $106.829875-29.750-0.691750$ $107.4285 \quad 29.750-0.727500$ $108.022-29.750-0.747000$
$108.604-29.750-0.749250$ $109.168 \quad 29.750-0.734000$ $109.7075 \quad 29.750-0.701500$
$110.216125-29.750-0.652375$ $110.6875 \quad 29.750-0.588250$ $111.116 \quad 29.750-0.511000$ $111.49575-29.750-0.423375$ $111.821625 \quad 29.750-0.32800$ $112.086625 \quad 29.750-0.22775$ $112.281875 \quad 29.750-0.13250$ $112.4085 \quad 29.750-0.058500$ $112.478125-29.750-0.014375$ $112.5 \quad 29.750 \quad 0.000$ 81
46
$\begin{array}{lll}100.000625 & 29.750 & -0.02225\end{array}$ 100.019375 29.750-0.129125 $100.061875-29.75-0.246125$ $100.12850-29.750-0.369250$ 100.219375 29.750 -0.495125 $100.336750-29.750-0.62075$ $100.481875 \quad 29.750-0.74600$ $100.652875-29.750-0.870625$ $100.848625-29.750-0.99250$ 101.068125 29.750-1.109875 $101.31025029 .750-1.22125$ $101.57387529 .750-1.32475$
101.857875 29.750-1.419375 $102.16075029 .750-1.50325$ $102.480750 \quad 29.750-1.57425$ 102.817625 29.750-1.629625 $103.171250 \quad 29.750-1.66825$ 103.543375 29.750-1.688125 $103.9360029 .750-1.69075$ $104.34712529 .750-1.680875$ 104.774125 29.750-1.658875 105.215125 29.750-1.626375 $105.6675029 .750-1.585375$ 106.128125 29.750-1.537875 $106.593000-29.750-1.485125$ 107.058125 29.750-1.428125 $107.519750-29.750-1.366875$ $107.97475029 .750-1.30150$
$108.42000029 .750-1.232375$ 108.852875 29.750-1.159625 $109.270750-29.750-1.083875$ $109.67112529 .750-1.00550$ $110.051500-29.750-0.92525$ $110.409625-29.750-0.843625$ $110.743375-29.750-0.761125$ $111.050750-29.750-0.678375$ $111.330125-29.750-0.596000$ $111.57987529 .750-0.514500$ $111.79862529 .750-0.434500$ $111.985500-29.750-0.356625$ $112.138875-29.750-0.281250$ $112.259375-29.750-0.205750$ 112.353125 29.750-0.129625 $112.427125-29.750-0.061750$ $112.479750-29.750-0.015750$ 112.50000029 .7500 .000 91

36
112.50062529 .75012 .47775 112.5055029 .75012 .570125 112.5330029 .75012 .640000 112.59862529 .75012 .67837 112.7147529 .75012 .693750 112.8757529 .75012 .698000 113.07837529 .75012 .69150 113.32012529 .75012 .67550 113.59837529 .75012 .65025 113.9102529 .75012 .615625 114.2525029 .75012 .570375 114.6257529 .75012 .509375 115.0347529 .75012 .433125 115.4800029 .75012 .348375 115.95912529 .75012 .25900 116.46875029 .75012 .16850 $117.005500 \quad 29.75012 .08025$ 117.56487529 .75011 .99737 118.14237529 .75011 .92275 $118.7325029 .750 \quad 11.858875$ 119.32987529 .75011 .80825 $119.92850 \quad 29.750 \quad 11.772500$ 120.5220029 .75011 .753000 $121.10400 \quad 29.75011 .750750$ 121.6680029 .75011 .766000 $122.20750 \quad 29.750 \quad 11.798500$ 122.71612529 .7511 .847625 $123.18750 \quad 29.750 \quad 11.911750$ 123.6160029 .75011 .989000 123.9957529 .75012 .076625 $124.321625 \quad 29.750 \quad 12.17200$ $124.586625 \quad 29.750 \quad 12.27225$ 124.78187529 .75012 .36750 $124.908500 \quad 29.750 \quad 12.44150$ 124.97812529 .7512 .485625 $125.00000 \quad 29.75012 .500000$ 101
46
112.50062529 .75012 .47775 112.51937529 .7512 .370875 112.56187529 .7512 .253875 $112.62850 \quad 29.75012 .130750$ 112.71937529 .7512 .004875 112.8367529 .75011 .879250 112.98187529 .75011 .75400 113.15287529 .7511 .629375 $113.34862529 .750 \quad 11.50750$ 113.56812529 .7511 .390125 113.81025029 .75011 .27875 114.07387529 .75011 .17525 114.35787529 .7511 .080625 114.66075029 .75010 .99675 114.98075029 .75010 .92575 115.31762529 .7510 .870375 115.67125029 .75010 .83175 116.04337529 .7510 .811875 $116.43600 \quad 29.750 \quad 10.809250$ 116.84712529 .7510 .819125

117.27412529 .7510 .841125	191
117.71512529 .7510 .873625	2
118.1675029 .7510 .914625	$125.8 \quad 29.750-3.200000$
118.62812529 .7510 .962125	98.6 29.750 -3.200000
119.09300029 .7511 .014875	201
119.55812529 .7511 .071875	2
120.01975029 .7511 .133125	$125.80000 \quad 30.000-3.200000$
120.47475029 .7511 .198500	98.600000 30.000 -3.200000
120.92000029 .7511 .267625	211
121.35287529 .7511 .340375	2
121.77075029 .7511 .416125	$\begin{array}{llll}125.8 & 29.750 & -3.200000\end{array}$
122.17112529 .7511 .494500	$125.8 \quad 30.000-3.200000$
122.55150029 .7511 .574750	22
122.90962529 .7511 .656375	2
123.24337529 .7511 .738875	$\begin{array}{lll}125.8 & 29.750 & 14.400000\end{array}$
123.55075029 .7511 .821625	125.8 29.750 -3.200000
123.83012529 .7511 .904000	231
124.07987529 .7511 .985500	2
124.29862529 .7512 .065500	$\begin{array}{llll}125.8000 & 30.000 & 14.400000\end{array}$
124.48550029 .7512 .143375	$125.8000 \quad 30.000-3.200000$
124.63887529 .7512 .218750	241
124.75937529 .7512 .294250	2
124.85312529 .7512 .370375	$\begin{array}{lll}125.8 & 29.750 & 14.400000\end{array}$
124.92712529 .7512 .438250	$125.8 \quad 30.000 \quad 14.400000$
124.97975029 .7512 .484250	251
125.00000029 .7512 .500000	2
111	$\begin{array}{lll}125.8 & 29.750 & 14.400000\end{array}$
2	$98.6 \quad 29.750 \quad 14.400000$
$100.0006250 .000-0.022250$	261
100.000625 29.750-0.022250	2
121	$\begin{array}{llll}125.8000 & 30.000 & 14.400000\end{array}$
2	98.60000330 .00014 .400000
112.5000000 .0000 .000	Surfaces
112.50000029 .7500 .000	11
131	22
2	-140.000 $0.000-260.000$
112.5006250 .00012 .477750	$380.000 \quad 0.000-260.000$
$112.500625 \quad 29.750$	-140.000 0.000260 .000
12.477750	$380.000 \quad 0.000 \quad 260.000$
141	21
2	2121
125.0000000 .00012 .500000	-123.0000 0.0000 .000
125.00000029 .7512 .500000	-121.7700 0.00024 .5680
151	-116.8500 0.00071 .3400
2	-107.0100 0.00087 .2439
98.629 .75014 .400000	-89.7900 00.000123 .4354
$98.629 .750-3.200000$	-68.8800 00.000153 .9419
161	-39.3600 0.000184 .8124
2	-7.3800 $0.000 \quad 208.6080$
98.60000030 .00014 .400000	$29.5200 \quad 0.000 \quad 227.5475$
$98.60000030 .000-3.200000$	$71.3400 \quad 0.000 \quad 240.5142$
171	$\begin{array}{llll}123.0000 & 0.000 & 246.0000\end{array}$
2	$\begin{array}{llll}174.6600 & 0.000 & 240.5142\end{array}$
98.629 .75014 .400000	$216.4800 \quad 0.000 \quad 227.5475$
98.630 .00014 .400000	$253.3800 \quad 0.000 \quad 208.6080$
181	$\begin{array}{llll}285.3600 & 0.000 & 184.8124\end{array}$
2	$314.8800 \quad 0.000 \quad 153.9419$
98.6 29.750 -3.200000	$335.7900 \quad 0.000 \quad 123.4354$
$98.630 .000-3.200000$	$353.0100 \quad 0.00087 .2439$

362.8500	0.000	54.6612
367.7700	0.000	24.5680
369.0000	0.000	0.000
-123.0000	0.000	0.000
-121.7700	3.8435	24.2679
-116.8500	8.5511	53.9896
-107.0100	13.6479	86.1689
-89.7900	19.3096	121.9151
-68.8800	24.0818	152.0477
-39.3600	28.9108	182.5369
-7.3800	32.6334	206.0398
29.5200	35.5961	224.7456
71.3400	37.6247	237.5524
123.0000	38.4828	242.9717
174.6600	37.6247	237.5524
216.4800	35.5961	224.7456
253.3800	32.6334	206.0398
285.3600	28.9108	182.5369
314.8800	24.0818	152.0477
335.7900	19.3096	121.9151
353.0100	13.6479	86.1689
362.8500	8.5511	53.9896
367.7700	3.8435	24.2679
369.0000	0.000	0.000
-123.0000	0.000	0.000
-121.7700	7.5923	23.3675
-116.8500	16.8916	51.9872
-107.0100	26.9597	82.9733
-89.7900	38.1438	117.3937
-68.8800	51.6600	120.5400
-39.3600	57.1098	175.7670
-7.3800	64.4632	198.3965
29.5200	66.4200	204.1800
71.3400	70.3157	216.4087
123.0000	76.0181	233.9608
174.6600	74.3230	228.7431
216.4800	70.3157	216.4087
253.3800	64.4632	198.3965
285.3600	57.1098	175.7670
314.8800	47.5706	146.4069
335.7900	38.1438	117.3937
353.0100	26.9597	82.9733
362.8500	16.8916	51.9872
367.7700	7.5923	23.3675
369.0000	0.000	0.000
-123.0000	0.000	0.000
-121.7700	11.1542	21.8915
-116.8500	24.8162	48.7055
-107.0100	39.6076	77.7335
-89.7900	56.0387	109.9817
-68.8800	69.8880	137.1622
-39.3600	83.9025	164.6675
-7.3800	94.7057	185.8702
29.5200	103.3039	202.7458
71.3400	109.1912	214.3004
123.000	111.6816	219.1885
174.660	109.1912	214.3004
216.480	103.3039	202.7458
253.3800	94.7057	185.8702

$0.000 \quad 24.5680$ $-123.0000 \quad 0.000$
$-121.7700 \quad 3.8435 \quad 24.2679$
$-116.85008 .551153 .9896$
-107.0100 13.647986 .1689
$-89.7900 \quad 19.3096 \quad 121.9151$
24.0818-152.0477
$-7.3800 \quad 32.6334 \quad 206.0398$
$29.5200 \quad 35.5961 \quad 224.7456$
37.6247 237.5524 $174.6600 \quad 37.6247 \quad 237.5524$
$216.4800 \quad 35.5961 \quad 224.7456$
32.6334206 .0398
$314.8800 \quad 24.0818 \quad 152.0477$
$335.7900 \quad 19.3096 \quad 121.9151$
353.010013 .647986 .1689
$367.8700-3.843524 .2679$
$369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
-121.7700 $7.5923 \quad 23.3675$
$-116.850016 .891651 .9872$
-107.0100 26.959782 .9733
$-89.7900 \quad 38.1438 \quad 117.3937$
$-38.880051 .6600120 .5400$
$-7.380064 .4632 \quad 198.3965$
$29.5200 \quad 66.4200 \quad 204.1800$
$71.3400 \quad 70.3157 \quad 216.4087$
$123.0000 \quad 76.0181 \quad 233.9608$
$174.6600 \quad 74.3230 \quad 228.7431$
$216.480070 .3157 \quad 216.4087$
$253.3800-64.4632198 .3960$
$314.880047 .5706 \quad 146.4069$
$335.7900 \quad 38.1438 \quad 117.3937$
$362.8500 \quad 16.8916 \quad 51.9872$
$367.7700 \quad 7.5923 \quad 23.3675$
$369.0000 \quad 0.000 \quad 0.000$
-121.7700 $11.1542 \quad 21.8915$
-116.8500 24.816248 .7055
-107.0100 39.607677 .7335
$-89.7900 \quad 56.0387 \quad 109.9817$
-68.8800 $69.8880 \quad 137.1622$
-39.3600 83.9025164 .6675
$-7.3800 \quad 94.7057185 .8702$
71.3400109 .1912
$123.000 \quad 111.6816 \quad 219.1885$
$174.660 \quad 109.1912 \quad 214.3004$
$253.3800 \quad 94.7057 \quad 185.8702$

285.3600	83.9025164 .6675	0	199.0181	144.5963
314.8800	69.8880137 .1622	174.660	194.5802	141.3713
335.7900	56.0387109 .9817	216.480	184.0890	133.7477
353.0100	39.607677 .7335	253.380	168.7669	122.6162
362.8500	24.816248 .7055	285.360	149.5154	108.6287
367.7700	11.154221 .8915	314.8800	124.5414	490.4837
369.0000	$0.000 \quad 0.000$	335.7900	99.8617	72.5528
-123.0000	$0.000 \quad 0.000$	353.0100	70.5813	51.2812
-121.7700	14.441419 .8768	362.8500	44.2228	32.1301
-116.8500	32.129744 .2234	367.7700	19.8769	14.4427
-107.0100	51.280370 .5823	369.0000	0.000	0.000
-89.7900	72.553799 .8612	-123.0000	0.000	0.000
-68.8800	90.4846124 .5424	-121.7700	21.8913	11.1536
-39.3600	108.6293149 .5163	-116.8500	48.7045	24.8165
-7.3800 1 1	122.6163168 .7658	-107.0100	77.7343	39.6085
29.5200	133.7485184 .0892	-89.7900	109.9821	56.0388
71.34001	141.3708194 .5811	-68.8800	137.1630	69.8886
123.000	144.5951199 .0189	-39.3600	164.6680	83.9032
174.660	141.3708194 .5811	-7.3800	185.8705	94.7051
216.480	133.7485184 .0892	29.5200	202.7455	103.3052
253.380	122.6163168 .7658	71.3400	214.2999	109.1920
285.360	108.6293149 .5163	123.000	219.1875	111.6815
314.8800	90.4846124 .5424	174.660	214.2999	109.1920
335.7900	72.553799 .8612	216.480	202.7455	103.3052
353.0100	51.280370 .5823	253.3800	185.8705	94.7051
362.8500	32.129744 .2234	285.3600	164.6680	83.9032
367.7700	14.441419 .8768	314.8800	137.1630	69.8886
369.0000	$0.000 \quad 0.000$	335.7900	109.9821	156.0388
-123.0000	$0.000 \quad 0.000$	353.0100	77.7343	39.6085
-121.7700	17.373117 .3725	362.8500	48.7045	24.8165
-116.8500	38.652138 .6515	367.7700	21.8913	11.1536
-107.0100	61.690361 .6894	369.0000	$0.000 \quad 0$	0.000
-89.7900	87.282387 .2833	-123.0000	0.000	0.000
-68.8800	108.8532108 .8525	-121.7700	23.3667	7.5916
-39.3600	130.6813130 .6826	-116.8500	51.9870	16.8928
-7.3800 1 1	147.5076147 .5090	-107.0100	82.9733	26.9591
29.52001	160.8997160 .8988	-89.7900	117.3945	38.1448
71.34001	170.0694170 .0696	-68.8800	146.4073	47.5715
123.0001	173.9482173 .9491	-39.3600	175.7660	57.1089
$174.660 \quad 1$	170.0694170 .0696	-7.3800	198.3974	64.4643
216.480	160.8997160 .8988	29.5200	216.4097	70.3166
253.380	147.5076147 .5090	71.3400	228.7428	74.3240
285.360	130.6813130 .6826	123.0000	233.9598	76.0189
314.8801	108.8532108 .8525	174.6600	228.7428	74.3240
335.7900	87.282387 .2833	216.4800	216.4097	70.3166
353.0100	61.690361 .6894	253.3800	198.3974	64.4643
362.8500	38.652138 .6515	285.3600	175.7660	57.1089
367.7700	17.373117 .3725	314.8800	146.4073	47.5715
369.0000	$0.000 \quad 0.000$	335.7900	117.3945	38.1448
-123.0000	$0.000 \quad 0.000$	353.0100	82.9733	26.9591
-121.7700	19.8769 14.4427	362.8500	51.9870	16.8928
-116.8500	44.222832 .1301	367.7700	23.3667	7.5916
-107.0100	$70.5813 \quad 51.2812$	369.0000	0.000	0.000
-89.7900	99.861772 .5528	-123.0000	0.000	0.000
-68.8800	124.541490 .4837	-121.7700	24.2667	3.8425
-39.3600	149.5154108 .6287	-116.8500	53.9894	8.5510
-7.3800 1 1	168.7669122 .6162	-107.0100	86.1692	13.6481
29.52001	184.0890133 .7477	-89.7900	121.9162	19.3110
71.34001	194.5802141 .3713	-68.8800	152.0465	24.0809

-39.3600	182.5360	28.9099
-7.3800	206.0391	32.6344
29.5200	224.7452	35.5962
71.3400	237.5534	37.6257
123.0000	242.9713	38.4842
174.6600	237.5534	37.6257
216.4800	224.7452	35.5962
253.3800	206.0391	32.6344
285.3600	182.5360	28.9099
314.8800	152.0465	24.0809
335.7900	121.9162	19.3110
353.0100	86.1692	13.6481
362.8500	53.9894	8.5510
367.7700	24.2667	3.8425
369.0000	0.000	0.000
-123.0000	0.000	0.000
-121.7700	24.5692	0.000
-116.8500	54.6624	0.000
-107.0100	87.2433	0.000
-89.7900	123.4359	0.000
-68.8800	153.9418	0.000
-39.3600	184.8113	0.000
-7.3800	208.6074	0.000
29.5200	227.5467	0.000
71.3400	240.5145	0.000
123.0000	246.0000	0.000
174.6600	240.5145	0.000
216.4800	227.5467	0.000
253.3800	208.6074	0.000
285.3600	184.8113	0.000
314.8800	153.9418	0.000
335.7900	123.4359	0.000
353.0100	87.2433	0.000
362.8500	54.6624	0.000
367.7700	24.5692	0.000
369.0000	0.000	0.000
-123.0000	0.000	0.000
-121.7700	24.2667	-3.8425
-116.8500	53.9894	-8.5510
-107.0100	86.1692	-13.6481
-89.7900	121.9162	-19.3085
-68.8800	152.0465	-24.0809
-39.3600	182.5360	-28.9099
-7.3800	206.0392	-32.6319
29.5200	224.7453	-35.5962
71.3400	237.5535	-37.6232
123.0000	242.9714	-38.4818
174.6600	237.5535	-37.6232
216.4800	224.7453	-35.5962
253.3800	206.0392	-32.6319
285.3600	182.5360	-28.9099
314.8800	152.0465	-24.0809
335.7900	121.9162	-19.3085
353.0100	86.1692	-13.6481
362.8500	53.9894	-8.5510
367.7700	24.2667	-3.8425
369.0000	0.000	0.000
-123.0000	0.000	0.000
-121.7700	23.3667	-7.5916

$-39.3600 \quad 182.5360 \quad 28.9099$ $\begin{array}{llll}29.5200 & 224.7452 & 35.5962\end{array}$ $71.3400 \quad 237.553437 .6257$ $123.0000 \quad 242.9713 \quad 38.4842$ $\begin{array}{llll}216.4800 & 224.7452 & 35.5962\end{array}$ $253.3800 \quad 206.0391 \quad 32.6344$ $285.3600 \quad 182.5360 \quad 28.9099$ $335.7900 \quad 121.9162 \quad 19.3110$ $353.0100 \quad 86.1692 \quad 13.6481$ $\begin{array}{lll}362.8500 & 53.9894 & 8.5510\end{array}$ $369.0000 \quad 0.000 \quad 0.000$ -123.0000 $0.000 \quad 0.000$ -121.7700 24.56920 .000 $-116.8500 \quad 54.66240 .000$ $-107.010087 .24330 .000$ $-89.7900 \quad 123.4359 \quad 0.000$ -68.8800 153.94180 .000 $7.3800-184.81130 .00$ $29.5200-227.5467$ $71.3400 \quad 240.5145 \quad 0.000$ $123.0000 \quad 246.0000 \quad 0.000$ $174.6600 \quad 240.5145 \quad 0.000$ $216.4800 \quad 227.5467 \quad 0.000$ $314.8800 \quad 153.9418 \quad 0.000$ $335.7900 \quad 123.4359 \quad 0.000$ $353.0100 \quad 87.2433 \quad 0.000$ 362.850054 .66240 .000 $369.0000 \quad 0.000 \quad 0.000$ $-123.0000 \quad 0.000 \quad 0.000$ $-121.7700 \quad 24.2667-3.8425$ $-116.850053 .9894-8.5510$ -107.0100 $86.1692-13.6481$ $-89.7900 \quad 121.9162-19.3085$ $-39.3600 \quad 182.5360-28.9099$ $-7.3800 \quad 206.0392-32.6319$ $29.5200 \quad 224.7453-35.5962$ $\begin{array}{llll}71.3400 & 237.5535 & -37.6232\end{array}$ $123.0000-242.9714-38.4818$ $174.6600 \quad 237.5535-37.6232$ $216.4800 \quad 224.7453-35.5962$ $253.3800-206.0392-32.6319$ $285.3600-182.5360-28.9099$ $314.8800-152.0465-24.0809$ $335.7900-121.9162-19.3085$ $352.0100-86.1692-13.6481$ $367.7700 \quad 24.2667-3.8425$ $369.0000 \quad 0.000 \quad 0.000$ $-123.0000 \quad 0.000 \quad 0.000$ $-121.7700 \quad 23.3667-7.5916$
-116.8500 51.9871 -16.8904 $-107.0100 \quad 82.9734-26.9591$ -89.7900 117.3946 -38.1448 $-68.8800 \quad 146.4074-47.5715$ $-39.3600 \quad 175.7661 \quad-57.1089$ $-7.3800 \quad 198.3975-64.4618$ $29.5200 \quad 216.4099-70.3166$ $71.3400 \quad 228.7430-74.3215$ $123.0000 \quad 233.9600-76.0189$ $\begin{array}{llll}174.6600 & 228.7430 & -74.3215\end{array}$ $216.4800-216.4099-70.3166$ $253.3800 \quad 198.3975-64.4618$ $285.3600 \quad 175.7661$-57.1089 $314.8800 \quad 146.4074-47.5715$ $335.7900 \quad 117.3946-38.1448$ $353.0100 \quad 82.9734-26.9591$ $362.8500 \quad 51.9871-16.8904$ $367.7700 \quad 23.3667-7.5916$ $369.00000 .000 \quad 0.000$ -123.0000 $0.000 \quad 0.000$
$-121.7700 \quad 21.8914-11.1536$ $-116.8500 \quad 48.7046-24.8165$ -107.0100 $77.7345-39.6085$ $-89.7900 \quad 109.9823-56.0388$ $-68.8800 \quad 137.1632-69.8886$ $-39.3600 \quad 164.6683-83.9032$ $-7.3800 \quad 185.8707-94.7051$ $29.5200-202.7458-103.3028$ $71.3400-214.3002-109.1920$ $123.000 \quad 219.1878-111.6815$ $174.660-214.3002-109.1920$ $216.480-202.7458-103.3028$ $253.3800 \quad 185.8707-94.7051$ $285.3600 \quad 164.6683-83.9032$ $314.8800 \quad 137.1632-69.8886$ $335.7900 \quad 109.9823-56.0388$ $353.0100 \quad 77.7345-39.6085$ $362.8500 \quad 48.7046-24.8165$ $367.7700 \quad 21.8914-11.1536$ $369.0000 \quad 0.000 \quad 0.000$ $-123.0000 \quad 0.000 \quad 0.000$ $-121.7700 \quad 19.8770-14.4402$ -116.8500 $44.2229-32.1301$ $-107.0100 \quad 70.5814-51.2812$ $-89.7900 \quad 99.8619-72.5528$ -68.8800 124.5417 -90.4837 -39.360 $149.5157-108.6287$ $-7.3800 \quad 168.7672-122.6162$ $29.5200 \quad 184.0894-133.7477$ $71.3400 \quad 194.5806-141.3713$ $123.000 \quad 199.0184-144.5939$ $174.660-194.5806-141.3713$ $216.480 \quad 184.0894-133.7477$ $\begin{array}{llll}253.380 & 168.7672 & -122.6162\end{array}$ $285.360 \quad 149.5157-108.6287$ $314.8800 \quad 124.5417$-90.4837 $335.7900 \quad 99.8619-72.5528$ $353.0100 \quad 70.5814-51.2812$ $362.8500 \quad 44.2229-32.1301$
$367.7700 \quad 19.8770 \quad-14.4402$ $369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
-121.7700 $17.3731-17.3725$
$-116.8500 \quad 38.6522-38.6515$
$-107.0100 \quad 61.6905-61.6894$
$-89.7900 \quad 87.2825-87.2833$
-68.880 $108.8535-108.8525$
$-39.360 \quad 130.6816-130.6801$ $-7.3800 \quad 147.5080-147.5065$ $29.5200 \quad 160.9001-160.8988$ $71.3400 \quad 170.0698-170.0696$ $123.000 \quad 173.9486-173.9491$ $174.660 \quad 170.0698-170.0696$ $216.480 \quad 160.9001-160.8988$ $253.380 \quad 147.5080-147.5065$ $285.360 \quad 130.6816-130.6801$ $\begin{array}{llll}314.880 & 108.8535 & -108.8525\end{array}$ $335.7900 \quad 87.2825-87.2833$ $353.0100 \quad 61.6905-61.6894$ $\begin{array}{llll}362.8500 & 38.6522 & -38.6515\end{array}$ $367.7700 \quad 17.3731-17.3725$ $369.0000 \quad 0.000 \quad 0.000$ -123.0000 $0.000 \quad 0.000$
$-121.7700 \quad 14.4415-19.8768$ $-116.8500 \quad 32.1298 \quad-44.2234$ $-107.0100 \quad 51.2805-70.5823$ $-89.7900 \quad 72.5540-99.8612$
$-68.8800 \quad 90.4850-124.5424$
-39.360 $108.6297-149.5163$
$-7.3800 \quad 122.6167-168.7658$
$29.5200 \quad 133.7490-184.0892$
$\begin{array}{llll}71.3400 & 141.3713 & -194.5811\end{array}$
$123.000 \quad 144.5956-199.0189$
$174.660 \quad 141.3713-194.5811$
$216.480 \quad 133.7490-184.0892$
$253.380 \quad 122.6167-168.7658$
$\begin{array}{llll}285.360 & 108.6297 & -149.5163\end{array}$
$314.8800 \quad 90.4850-124.5424$
$335.7900 \quad 72.5540-99.8612$
$353.0100 \quad 51.2805-70.5823$
$362.8500 \quad 32.1298-44.2234$
$367.7700 \quad 14.4415-19.8768$
$369.0000 \quad 0.000 \quad 0.000$
-123.0000 $0.000 \quad 0.000$
-121.7700 $11.1542-21.8915$
$-116.8500 \quad 24.8163-48.7055$
-107.010039 .6078 -77.7335
$-89.7900 \quad 56.0390-109.9817$
$-68.880069 .8884-137.1622$
$-39.3600 \quad 83.9030-164.6675$
$-7.3800 \quad 94.7062-185.8702$
$29.5200 \quad 103.3045-202.7458$
$\begin{array}{llll}71.3400 & 109.1918 & -214.3004\end{array}$ $123.000 \quad 111.6822-219.1885$ $174.660 \quad 109.1918-214.3004$ $\begin{array}{llll}216.480 & 103.3045 & -202.7458\end{array}$ $253.3800-94.7062-185.8702$ $285.3600-83.9030-164.6675$
$314.8800-69.8884-137.1622$
$335.7900 \quad 56.0390-109.9817$
$353.0100 \quad 39.6078-77.7335$
$362.8500 \quad 24.8163-48.7055$
$\begin{array}{llll}367.7700 & 11.1542 & -21.8915\end{array}$
$369.0000 \quad 0.000 \quad 0.000$
-123.0000 $0.000 \quad 0.000$
-121.7700 $7.5924-23.3675$
$-116.8500 \quad 16.8917-51.9872$
$-107.0100 \quad 26.9599-82.9733$
$-89.7900 \quad 38.1441-117.3937$
-68.8800 $47.5710-146.4069$
$-39.3600 \quad 57.1103-175.7670$
$-7.3800 \quad 64.4637-198.3965$
$29.5200 \quad 70.3163-216.4087$
$71.3400 \quad 74.3236-228.7431$
$123.0000 \quad 76.0187-233.9608$
$174.6600 \quad 74.3236-228.7431$
$216.4800 \quad 70.3163-216.4087$
$253.3800-64.4637-198.3965$
$285.3600-57.1103-175.7670$
$314.8800 \quad 47.5710-146.4069$
$335.7900 \quad 38.1441$-117.3937
$353.0100 \quad 26.9599-82.9733$
$362.8500 \quad 16.8917-51.9872$
$367.7700 \quad 7.5924-23.3675$
$369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$-121.7700 \quad 3.8435-24.2679$
$-116.8500 \quad 8.5512-53.9896$
$-107.010013 .6481-86.1689$
$-89.7900 \quad 19.3099-121.9151$
-68.8800 $24.0822-152.0452$
$-39.3600 \quad 28.9113-182.5369$
$-7.3800 \quad 32.6339-206.0398$
$29.5200 \quad 35.5967-224.7456$
$71.3400 \quad 37.6254-237.5524$
$123.0000 \quad 38.4835-242.9717$
$174.6600 \quad 37.6254-237.5524$
$216.4800 \quad 35.5967-224.7456$
$253.3800 \quad 32.6339-206.0398$
$285.3600 \quad 28.9113-182.5369$
314.8800 24.0822 -152.0452
$335.7900-19.3099-121.9151$
$353.0100 \quad 13.6481-86.1689$
$362.8500 \quad 8.5512-53.9896$
$367.7700 \quad 3.8435-24.2679$
$369.0000 \quad 0.000 \quad 0.000$
$-123.0000 \quad 0.000 \quad 0.000$
$-121.7700 \quad 0.000 \quad-24.5680$
$-116.8500 \quad 0.000 \quad-54.6612$
-107.0100 $0.000 \begin{array}{lll}-87.2439\end{array}$
$-89.7900 \quad 0.000 \quad-123.4354$
-68.8800 $0.000 \begin{array}{lll}-153.9419\end{array}$
$-39.3600 \quad 0.000 \quad-184.8124$
$-7.3800 \quad 0.000 \quad-208.6080$
$29.5200 \quad 0.000 \quad-227.5475$
$71.3400 \quad 0.000 \quad-240.5142$
$123.0000 \quad 0.000-246.0000$
$174.6600 \quad 0.000 \quad-240.5142$
$216.4800 \quad 0.000 \quad-227.5475$
$253.3800 \quad 0.000-208.6080$
$285.3600 \quad 0.000-184.8124$
$314.8800 \quad 0.000-153.9419$
$335.7900 \quad 0.000 \quad-123.4354$
$353.0100 \quad 0.000 \quad-87.2439$
$362.8500 \quad 0.000 \quad-54.6612$
$367.7700 \quad 0.000 \quad-24.5680$ $369.0000 \quad 0.000 \quad 0.000$
31
362
$100.000625 \quad 0.000-0.022250$
$100.0055 \quad 0.000 \quad 0.070125$
$100.033 \quad 0.000 \quad 0.140000$
$100.098625 \quad 0.000 \quad 0.178375$
$100.214750 .000 \quad 0.193750$
$100.37575 \quad 0.000 \quad 0.198000$
$100.5783750 .000 \quad 0.191500$
$100.820125 \quad 0.000 \quad 0.175500$
$101.0983750 .000 \quad 0.150250$
$101.41025 \quad 0.000 \quad 0.115625$
$101.7525 \quad 0.000 \quad 0.070375$
$102.125750 .000 \quad 0.009375$
$102.53475 \quad 0.000 \quad-0.066875$ $102.98 \quad 0.000 \quad-0.151625$
$103.459125 \quad 0.000-0.241000$
$103.968750 .000-0.331500$
$104.5055 \quad 0.000-0.419750$
$105.0648750 .000-0.502625$
$105.642375 \quad 0.000-0.577250$
$106.2325 \quad 0.000 \quad-0.641125$
$106.829875 \quad 0.000-0.691750$
$107.4285 \quad 0.000 \quad-0.727500$
$\begin{array}{llll}108.022 & 0.000 & -0.747000\end{array}$
$\begin{array}{llll}108.604 & 0.000 & -0.749250\end{array}$
$109.168 \quad 0.000 \quad-0.734000$
$109.7075 \quad 0.000 \quad-0.701500$
$110.2161250 .000-0.652375$
$110.6875 \quad 0.000 \quad-0.588250$
$111.1160 .000-0.511000$
$111.495750 .000 \quad-0.423375$
$111.8216250 .000-0.328000$
$112.0866250 .000-0.227750$
$112.2818750 .000-0.132500$ $112.4085 \quad 0.000 \quad-0.058500$ $112.4781250 .000-0.014375$ $112.5 \quad 0.000 \quad 0.000$
$100.000625 \quad 29.750-0.02225$ $100.0055 \quad 29.750 \quad 0.070125$ $100.033 \quad 29.750 \quad 0.140000$ $100.098625 \quad 29.75 \quad 0.178375$ $100.21475 \quad 29.750 \quad 0.193750$ $100.37575 \quad 29.750 \quad 0.198000$ $100.578375 \quad 29.75 \quad 0.191500$ $100.820125 \quad 29.750 \quad 0.17550$ $101.098375 \quad 29.75 \quad 0.150250$ $101.41025 \quad 29.750 \quad 0.115625$ $101.7525 \quad 29.750 \quad 0.070375$
$102.12575 \quad 29.750 \quad 0.009375$ $102.53475 \quad 29.750-0.066875$ $102.98 \quad 29.750-0.151625$ $103.459125 \quad 29.75-0.241000$ $103.96875-29.750-0.331500$ $104.5055 \quad 29.750-0.419750$ $105.064875 \quad 29.75-0.502625$ $105.642375-29.75-0.577250$ $106.2325 \quad 29.750-0.641125$ $106.829875 \quad 29.75-0.691750$ $107.4285 \quad 29.750-0.727500$ $108.022 \quad 29.750-0.747000$
$108.604-29.750-0.749250$
$109.168 \quad 29.750-0.734000$
$109.7075 \quad 29.750-0.701500$
$110.216125 \quad 29.75-0.652375$
$110.6875 \quad 29.750-0.588250$
$111.116 \quad 29.750-0.511000$
$111.49575 \quad 29.750-0.423375$
$111.821625 \quad 29.75-0.328000$
$112.086625 \quad 29.75-0.227750$ $112.281875 \quad 29.75-0.132500$ $112.4085 \quad 29.750-0.058500$ $112.478125 \quad 29.75-0.014375$ $112.5 \quad 29.750 \quad 0.000$
41
462
$100.000625 \quad 0.000-0.022250$ $100.019375 \quad 0.000-0.129125$ $\begin{array}{llll}100.061875 & 0.000 & -0.246125\end{array}$ $100.1285 \quad 0.000 \quad-0.369250$
$100.219375 \quad 0.000-0.495125$
$100.33675 \quad 0.000 \quad-0.620750$
$100.4818750 .000-0.746000$
$100.6528750 .000-0.870625$
$100.8486250 .000-0.992500$
$101.068125 \quad 0.000-1.109875$
$101.31025 \quad 0.000-1.221250$
$101.573875 \quad 0.000-1.324750$
$101.8578750 .000-1.419375$
$102.16075 \quad 0.000-1.503250$
$102.48075 \quad 0.000 \quad-1.574250$
$102.8176250 .000-1.629625$
$103.17125 \quad 0.000 \quad-1.668250$
$103.5433750 .000-1.688125$
$103.936 \quad 0.000 \quad-1.690750$
$104.347125 \quad 0.000-1.680875$
$104.774125 \quad 0.000-1.658875$
$105.2151250 .000-1.626375$ $105.6675 \quad 0.000 \quad-1.585375$
$106.1281250 .000-1.537875$
$106.593 \quad 0.000 \quad-1.485125$
$107.058125 \quad 0.000-1.428125$
$\begin{array}{llll}107.51975 & 0.000 & -1.366875\end{array}$
$107.974750 .000-1.301500$
$108.42 \quad 0.000-1.232375$
$108.852875 \quad 0.000-1.159625$
$109.27075 \quad 0.000 \quad-1.083875$
$109.6711250 .000-1.005500$
$110.0515 \quad 0.000 \quad-0.925250$ $110.4096250 .000-0.843625$ $110.7433750 .000-0.761125$ $111.05075 \quad 0.000 \quad-0.678375$
$111.3301250 .000-0.596000$ $111.5798750 .000-0.514500$ $111.7986250 .000-0.434500$ $111.9855 \quad 0.000 \quad-0.356625$
$112.1388750 .000-0.281250$ $112.2593750 .000-0.205750$ $112.3531250 .000-0.129625$ $112.4271250 .000-0.061750$ $112.479750 .000 \quad-0.015750$ $112.5 \quad 0.000 \quad 0.000$ $100.000625 \quad 29.750-0.02225$ $100.019375 \quad 29.75-0.129125$ $100.061875 \quad 29.75-0.246125$ $100.1285 \quad 29.750-0.369250$ $100.219375 \quad 29.75-0.495125$ $100.33675 \quad 29.750-0.620750$ $\begin{array}{llll}100.481875 & 29.75 & -0.746000\end{array}$ $\begin{array}{llll}100.652875 & 29.75 & -0.870625\end{array}$ $\begin{array}{llll}100.848625 & 29.75 & -0.992500\end{array}$ $101.068125 \quad 29.75-1.109875$ $101.31025 \quad 29.75-1.221250$ $101.573875 \quad 29.75-1.324750$ $101.857875 \quad 29.75-1.419375$ $102.16075 \quad 29.75-1.503250$ $102.48075 \quad 29.75-1.574250$ $102.817625 \quad 29.75-1.629625$ $103.17125 \quad 29.75-1.668250$ $103.543375 \quad 29.75-1.688125$ $103.936 \quad 29.75-1.690750$ $\begin{array}{lll}104.347125 & 29.75 & -1.680875\end{array}$ $104.774125 \quad 29.75-1.658875$ $105.215125 \quad 29.75-1.626375$ $105.6675 \quad 29.75-1.585375$ $106.128125 \quad 29.75-1.537875$ $106.593 \quad 29.75 \quad-1.485125$ $107.058125 \quad 29.75-1.428125$ $\begin{array}{llll}107.51975 & 29.75 & -1.366875\end{array}$ $107.97475 \quad 29.75-1.301500$ $108.42 \quad 29.75-1.232375$ $108.852875 \quad 29.75-1.159625$ $109.27075 \quad 29.75-1.083875$ $109.671125 \quad 29.75-1.005500$ $110.0515 \quad 29.75-0.925250$ $110.409625 \quad 29.75-0.843625$ $110.743375 \quad 29.75-0.761125$ $111.05075 \quad 29.75-0.678375$ $111.330125 \quad 29.75-0.596000$ $\begin{array}{llll}111.579875 & 29.75 & -0.514500\end{array}$ $111.798625 \quad 29.75-0.434500$ $111.9855 \quad 29.75-0.356625$ $112.138875 \quad 29.75-0.281250$ $112.259375 \quad 29.75-0.205750$ $\begin{array}{llll}112.353125 & 29.75 & -0.129625\end{array}$ $112.427125 \quad 29.75-0.061750$ $112.47975 \quad 29.75-0.015750$
$112.5 \quad 29.75 \quad 0.000$
51
362
$112.500625 \quad 0.000 \quad 12.47775$
$112.5055 \quad 0.000 \quad 12.570125$
$112.533 \quad 0.000 \quad 12.640000$
$112.598625 \quad 0.00 \quad 12.678375$
$112.714750 .000 \quad 12.693750$
$112.875750 .000 \quad 12.698000$ $113.0783750 .000 \quad 12.69150$ $113.320125 \quad 0.000 \quad 12.67550$ $113.5983750 .000 \quad 12.65025$ $113.910250 .000 \quad 12.615625$ $\begin{array}{llll}114.2525 & 0.000 & 12.570375\end{array}$ $114.62575 \quad 0.000 \quad 12.509375$ $115.034750 .000 \quad 12.433125$ $115.48 \quad 0.000 \quad 12.348375$ $115.959125 \quad 0.000 \quad 12.25900$ $116.468750 .000 \quad 12.168500$ $117.0055 \quad 0.000 \quad 12.080250$ $117.564875 \quad 0.00 \quad 11.997375$ $118.1423750 .000 \quad 11.92275$ $118.7325 \quad 0.000 \quad 11.858875$ $119.3298750 .000 \quad 11.80825$ $119.9285 \quad 0.000 \quad 11.772500$ $120.522 \quad 0.000 \quad 11.753000$ $\begin{array}{llll}121.104 & 0.000 & 11.750750\end{array}$ $121.668 \quad 0.000 \quad 11.766000$ $122.2075 \quad 0.000 \quad 11.798500$ $\begin{array}{llll}122.716125 & 0.00 & 11.847625\end{array}$ $123.1875 \quad 0.000 \quad 11.911750$ $123.616 \quad 0.000 \quad 11.989000$ $\begin{array}{llll}123.99575 & 0.000 & 12.076625\end{array}$ $\begin{array}{llll}124.321625 & 0.000 & 12.17200\end{array}$ $\begin{array}{llll}124.586625 & 0.000 & 12.27225\end{array}$ $124.781875 \quad 0.000 \quad 12.36750$ $124.9085 \quad 0.000 \quad 12.441500$ $124.978125 \quad 0.00 \quad 12.485625$ $125 \quad 0.000 \quad 12.500000$ $112.500625 \quad 29.75 \quad 12.47775$ $112.5055 \quad 29.75 \quad 12.570125$ $112.533 \quad 29.75 \quad 12.640000$ $112.598625 \quad 9.75 \quad 12.678375$ $\begin{array}{llll}112.71475 & 29.75 & 12.693750\end{array}$ $112.87575 \quad 29.75 \quad 12.698000$ $\begin{array}{lll}113.078375 & 29.75 & 12.69150\end{array}$ $\begin{array}{llll}113.320125 & 29.75 & 12.67550\end{array}$ $113.598375 \quad 29.75 \quad 12.65025$ $113.91025 \quad 29.75 \quad 12.615625$ $114.2525 \quad 29.75 \quad 12.570375$ $\begin{array}{lll}114.62575 & 29.75 & 12.509375\end{array}$ $115.03475 \quad 29.75 \quad 12.433125$ $115.48 \quad 29.75 \quad 12.348375$ $115.959125 \quad 29.75 \quad 12.25900$ $116.46875 \quad 29.75 \quad 12.168500$ $117.0055 \quad 29.75 \quad 12.080250$ $117.564875 \quad 29.75 \quad 11.997375$ $118.142375 \quad 29.75 \quad 11.92275$ $118.7325 \quad 29.7511 .858875$
$119.329875 \quad 29.75 \quad 11.80825$ $119.9285 \quad 29.75 \quad 11.772500$ $120.522 \quad 29.75 \quad 11.753000$ $121.104 \quad 29.75 \quad 11.750750$ $121.668 \quad 29.75 \quad 11.766000$ $122.2075 \quad 29.75 \quad 11.798500$ $122.716125 \quad 29.75 \quad 11.847625$ $123.1875 \quad 29.75 \quad 11.911750$ $123.616 \quad 29.75 \quad 11.989000$ $123.99575 \quad 29.75 \quad 12.076625$ $124.321625 \quad 29.75 \quad 12.17200$ $124.586625 \quad 29.75 \quad 12.27225$ $124.781875 \quad 29.75 \quad 12.36750$ $124.9085 \quad 29.75 \quad 12.441500$ $124.978125 \quad 29.75 \quad 12.485625$ $125 \quad 29.75 \quad 12.500000$
61
462
$112.500625 \quad 0.000 \quad 12.47775$ $112.519375 \quad 0.000 \quad 12.370875$ $112.5618750 .000 \quad 12.253875$ $112.6285 \quad 0.000 \quad 12.130750$ $112.7193750 .000 \quad 12.004875$ $112.83675 \quad 0.000 \quad 11.879250$ $112.981875 \quad 0.000 \quad 11.75400$ $113.1528750 .000 \quad 11.629375$ $113.348625 \quad 0.000 \quad 11.50750$ $113.5681250 .000 \quad 11.390125$ $113.81025 \quad 0.000 \quad 11.278750$ $114.0738750 .000 \quad 11.17525$ $114.3578750 .000 \quad 11.080625$ $\begin{array}{lll}114.66075 & 0.000 & 10.996750\end{array}$ $114.98075 \quad 0.000 \quad 10.925750$ $115.317625 \quad 0.000 \quad 10.870375$ $\begin{array}{llll}115.67125 & 0.000 & 10.831750\end{array}$ $116.0433750 .000 \quad 10.811875$ $116.436 \quad 0.000 \quad 10.809250$ $\begin{array}{llll}116.847125 & 0.000 & 10.819125\end{array}$ $117.2741250 .000 \quad 10.841125$ $117.7151250 .000 \quad 10.873625$ $\begin{array}{lll}118.1675 & 0.000 & 10.914625\end{array}$ $118.6281250 .000 \quad 10.962125$ $119.093 \quad 0.000 \quad 11.014875$ $119.5581250 .000 \quad 11.071875$ $120.01975 \quad 0.000 \quad 11.133125$ $120.47475 \quad 0.000 \quad 11.198500$ $120.92 \quad 0.000 \quad 11.267625$ $121.3528750 .000 \quad 11.340375$ $121.77075 \quad 0.000 \quad 11.416125$ $122.171125 \quad 0.000 \quad 11.49450$ $122.5515 \quad 0.000 \quad 11.574750$ $122.9096250 .000 \quad 11.656375$ $123.2433750 .000 \quad 11.738875$ $\begin{array}{llll}123.55075 & 0.000 & 11.821625\end{array}$ $\begin{array}{llll}123.830125 & 0.000 & 11.90400\end{array}$ $124.079875 \quad 0.000 \quad 11.98550$ $124.298625 \quad 0.000 \quad 12.06550$ $124.4855 \quad 0.000 \quad 12.143375$ $124.638875 \quad 0.000 \quad 12.21875$

$\begin{array}{llll}124.759375 & 0.000 & 12.29425\end{array}$	22	Surface Regions
$124.8531250 .000 \quad 12.370375$	$\begin{array}{llll}70 & 30.000 & -30.000\end{array}$	111
124.9271250 .00012 .43825	$130 \quad 30.000-30.000$	6
$124.979750 .000 \quad 12.484250$	$70 \quad 30.000 \quad 30.000$	$\begin{array}{llllll}1 & -2 & -3 & 4 & -5 & 6\end{array}$
$125 \quad 0.000 \quad 12.500000$	$13030.000 \quad 30.000$	221
$\begin{array}{llll}112.500625 & 29.75 & 12.47775\end{array}$	91	2
112.51937529 .7512 .370875	22	12
112.56187529 .7512 .253875	$\begin{array}{llll}98.6 & 29.75 & -3.200000\end{array}$	331
$112.6285 \quad 29.75 \quad 12.130750$	$98.630 .000-3.200000$	4
$112.719375 \quad 29.7512 .004875$	$\begin{array}{lllll}98.6 & 29.75 & 14.400000\end{array}$	$\begin{array}{lll}11 & 3 & 12\end{array}$
$112.83675 \quad 29.7511 .879250$	$98.630 .000 \quad 14.400000$	441
$112.981875 \quad 29.75 \quad 11.75400$	101	4
113.15287529 .7511 .629375	22	$\begin{array}{llll}11 & 8 & 12\end{array}$
$113.348625 \quad 29.75 \quad 11.50750$	$\begin{array}{llll}98.6 & 29.75-3.200000\end{array}$	551
113.56812529 .7511 .390125	$\begin{array}{lllll}98.6 & 30.000 & -3.200000\end{array}$	4
$113.81025 \quad 29.7511 .278750$	$\begin{array}{llll}125.8 & 29.75 & -3.200000\end{array}$	$\begin{array}{llll}13 & 5 & 14 & 9\end{array}$
$114.073875 \quad 29.7511 .17525$	$125.8 \quad 30.000-3.200000$	661
114.35787529 .7511 .080625	111	4
$114.66075 \quad 29.7510 .996750$	22	$\begin{array}{llll}13 & 10 & 14 & 6\end{array}$
$114.98075 \quad 29.7510 .925750$	$\begin{array}{llll}125.8 & 29.75 & -3.200000\end{array}$	771
$115.317625 \quad 29.7510 .870375$	125.8 30.000 -3.200000	8
$115.67125 \quad 29.7510 .831750$	$\begin{array}{llll}125.8 & 29.75 & 14.400000\end{array}$	
116.04337529 .7510 .811875	$125.8 \quad 30.000 \quad 14.400000$	881
$116.436 \quad 29.75 \quad 10.809250$	121	4
$116.847125 \quad 29.75 \quad 10.819125$	22	$\begin{array}{llll}23 & 20 & -16 & -26\end{array}$
$117.274125 \quad 29.7510 .841125$	$98.600000 \quad 29.7514 .400000$	991
117.71512529 .7510 .873625	$98.60000 \quad 30.000 \quad 14.400000$	4
$118.1675 \quad 29.7510 .914625$	$125.80000 \quad 29.7514 .400000$	$\begin{array}{llll}17 & 16 & -18 & -15\end{array}$
118.62812529 .7510 .962125	$125.8000 \quad 30.000 \quad 14.400000$	$\begin{array}{llll}10 & 10 \quad 1\end{array}$
119.09329 .7511 .014875	Mesh generation	4
$119.558125 \quad 29.75 \quad 11.071875$	2612	$\begin{array}{llll}19 & 18 & -20 & -21\end{array}$
$120.01975 \quad 29.7511 .133125$	Curves segments	11111
$120.47475 \quad 29.7511 .198500$	111	4
$120.92 \quad 29.75 \quad 11.267625$	221	$\begin{array}{lllll}22 & 21 & -23 & -24\end{array}$
$121.352875 \quad 29.7511 .340375$	331	$12 \quad 121$
$121.77075 \quad 29.7511 .416125$	441	4
$122.171125 \quad 29.7511 .494500$	551	$\begin{array}{llll}24 & 26 & -17 & -25\end{array}$
$122.5515 \quad 29.75 \quad 11.574750$	661	
122.90962529 .7511 .656375	771	
123.24337529 .7511 .738875	881	
$123.55075 \quad 29.7511 .821625$	991	
$123.830125 \quad 29.7511 .904000$	$\begin{array}{llll}10 & 10 & 1\end{array}$	
124.07987529 .7511 .985500	11111	
124.29862529 .7512 .065500	$\begin{array}{llll}12 & 12\end{array}$	
$124.4855 \quad 29.75 \quad 12.143375$	13131	
$124.638875 \quad 29.7512 .218750$	1414	
124.75937529 .7512 .294250	$\begin{array}{llll}15 & 15\end{array}$	
124.85312529 .7512 .370375	16161	
$124.927125 \quad 29.7512 .438250$	$17 \quad 17 \quad 1$	
$124.97975 \quad 29.75 \quad 12.484250$	$18 \quad 181$	
$125 \quad 29.75 \quad 12.500000$	$19 \quad 191$	
71	$20 \quad 20 \quad 1$	
22	21211	
$\begin{array}{llll}70 & 29.75 & -30.000\end{array}$	$22 \begin{array}{lll}22 & 1\end{array}$	
$130-29.75-30.000$	$\begin{array}{llll}23 & 231\end{array}$	
$70 \quad 29.75 \quad 30.000$	$24 \quad 241$	
$130 \quad 29.75 \quad 30.000$	$\begin{array}{llll}25 & 25 & 1\end{array}$	
81	26261	

APPENDIX B-2

STARS-CFD Background Mesh Data File (boxwing.bac)

Background Mesh....boxwing					
41	03	6			
$1-1800$	-100 -2	2400			
1	00	40			
0	10	40			
0	$0 \quad 1$	40			
21800	-100 -2	2400			
1	00	40			
0	10	40			
0	0	40			
30	-100 24	400			
1	00	40			
0	10	40			
0	$0 \quad 1$	40			
40	2400 0				
1	00	40			
0	10	40			
0	$0 \quad 1$	40			
11	23	4			
* Point Sources					
* Line Sources					
1. Leading Edge of Lower Wing					
100.00000	0.00000	-0.02224	0.07	0.07	0.35
100.00000	30.00000	-0.02224	0.07	0.07	0.35
2. Leading Edge of Upper Wing					
112.50063	0.00000	12.57013	0.07	0.07	0.35
112.50063	30.00000	-12.57013	0.07	0.07	0.35
3 . In the middle					
112.50063	0.00000	6.00000	0.8	6	15.00000
112.50063	30.00000	0 6.00000	0.8	6	15.00000
* Triangle Sources					
1. Source for lower wing					
100.00000	0.00000	0.00000	0.5	1	3
100.00000	30.00000	0.00000	0.5	1	3

112.50000	0.00000	0.00000	0.5	1	3
2. Source for lower wing					
112.50000	0.00000	0.00000	0.5	1	3
100.00000	30.00000	0.00000	0.5	1	3
112.50000	30.00000	0.00000	0.5	1	3
3. Source for upper wing					
112.50063	0.00000	12.57013	0.5	1	3
112.50063	30.00000	12.57013	0.5	1	3
125.00000	0.00000	12.57013	0.5	1	3
4. Source for upper wing					
125.00000	0.00000	12.57013	0.5	1	3
112.50063	30.00000	12.57013	0.5	1	3
125.00000	30.00000	12.57013	0.5	1	3
5. Source for endplate					
98.60000	30.00000	14.40000	0.5	1	3
125.80000	30.00000	-3.20000	0.5	1	3
125.80000	30.00000	14.40000	0.5	1	3
6. Source for endplate					
98.60000	30.00000	14.40000	0.5	1	3
125.80000	30.00000	-3.20000	0.5	1	3
98.60000	30.00000	-3.20000	0.5	1	3

APPENDIX B-3

STARS-CFD Boundary Conditions Data File (boxwing.bco)

Fin Boundary Condition File	19	3
12	26	20
Surface Regions	21	1
1	2	22
2	3	1
3	1	23
4	1	1
5	1	24
6	1	1
7	1	26
8	1	3
9	1	
10	1	
11	1	
12	1	
Curve Segments		
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	3	
8	3	
9	3	
10	3	
11	0	
12	1	
13	0	
14	1	
15	1	
16	1	
17	1	
18	1	

APPENDIX B-4

STARS-CFD Parameter Control File (boxwing.cons)

```
&control
    nout = 50,
    nstep = 1,
    ncycl = 5000,
    nstpe =20,
    nsmth =0,
    smofc =0.25,
    cfl =0.20,
    mach = 0.434,
    alpha =0.0,
    beta =0.0,
    relax = 1.0,
    amplitude= 1.0,
    restart = 0,
/
```


APPENDIX C-1

Selig 1223 Airfoil Coordinate Data

X	Y	0.83277	-0.06749
0.00005	-0.00178	0.85947	-0.06089
0.00155	-0.01033	0.88406	-0.05427
0.00495	-0.01969	0.90641	-0.04768
0.01028	-0.02954	0.92639	-0.04116
0.01755	-0.03961	0.94389	-0.03476
0.02694	-0.04966	0.95884	-0.02853
0.03855	-0.05968	0.97111	-0.02250
0.05223	-0.06965	0.98075	-0.01646
0.06789	-0.07940	0.98825	-0.01037
0.08545	-0.08879	0.99417	-0.00494
0.10482	-0.09770	0.99838	-0.00126
0.12591	-0.10598	1.00000	0.00000
0.14863	-0.11355	0.00044	0.00561
0.17286	-0.12026	0.00264	0.01120
0.19846	-0.12594	0.00789	0.01427
0.22541	-0.13037	0.01718	0.01550
0.25370	-0.13346	0.03006	0.01584
0.28347	-0.13505	0.04627	0.01532
0.31488	-0.13526	0.06561	0.01404
0.34777	-0.13447	0.08787	0.01202
0.38193	-0.13271	0.11282	0.00925
0.41721	-0.13011	0.14020	0.00563
0.45340	-0.12683	0.17006	0.00075
0.49025	-0.12303	0.20278	-0.00535
0.52744	-0.11881	0.23840	-0.01213
0.56465	-0.11425	0.27673	-0.01928
0.60158	-0.10935	0.31750	-0.02652
0.63798	-0.10412	0.36044	-0.03358
0.67360	-0.09859	0.40519	-0.04021
0.70823	-0.09277	0.45139	-0.04618
0.74166	-0.08671	0.49860	-0.05129
0.77369	-0.08044	0.54639	-0.05534
0.80412	-0.07402	0.59428	-0.05820

0.64176	-0.05976
0.68832	-0.05994
0.73344	-0.05872
0.77660	-0.05612
0.81729	-0.05219
0.85500	-0.04706
0.88928	-0.04088
0.91966	-0.03387
0.94573	-0.02624
0.96693	-0.01822
0.98255	-0.01060
0.99268	-0.00468
0.99825	-0.00115
1.00000	0.00000

VITA

Tony Michael Buratti
Candidate for the Degree of
Masters of Science

Thesis: TOP-FUEL DRAGSTER WING DESIGN USING CFD AND ITS INFLUENCE ON VEHICLE DYNAMIC PERFORMANCE

Major Field: Mechanical Engineering
Biography:
Personal Data: Born in Oklahoma City, Oklahoma March 12, 1976. The son of Richard M. and Joyce K. Buratti.

Education: Graduated from John Marshall High School, Oklahoma City, Oklahoma in May 1994; received a Bachelor of Science degree in Mechanical Engineering in July 1998 from Oklahoma State University, Stillwater, Oklahoma. Completed requirements for the Masters of Science degree with a major in Mechanical at Oklahoma State University in December, 2000.

Experience: Field Engineer, Boeing Aerospace Operations, 1997-1998; Teaching Assistant, Oklahoma State University School of Mechanical and Aerospace Engineering, 1998-2000; Graduate Research Assistant, Oklahoma State University School of Mechanical Engineering, 19982000.

Professional Memberships: American Institute of Aeronautics and Astronautics, American Society of Mechanical Engineers, Society of Automotive Engineers, American Pool Players Association, Phi Kappa Phi, Tau Beta Pi, Pi Tau Sigma, and Golden Key National Honor Society.

of Study: TOP-FUEL DRAGSTER WING DESIGN USING CFD AND ITS INFLUENCE ON VEHICLE DYNAMIC PERFORMANCE

Pages in Study: 144
Candidate for the Degree of Masters of Science
Major Field: Mechanical Engineering
Scope and Method of Study: The scope of the thesis is to develop a dynamic dragster model that will provide insight into the aerodynamics of the rear wing effects on a top-fuel dragster's overall performance. It was never know how much down force is needed for these vehicles but study of this dynamic model provides this information. This research focuses on top-fuel dragsters running on a quarter mile drag strip. By using a CFD code to analyze rear wing designs this data can be implemented into the dynamic model and can determine how the wing effects the dragster performance. Lift and drag will be varied in the dynamic model and plots will show how each parameter effects the elapsed time and top speed of the dragster.

Findings and Conclusions: Development of the dragster model proved beneficial in understanding how the aerodynamic characteristics affect the performance of the dragster. This model allows us to understand the questions of how much down force is needed and how changing these aerodynamic characteristics will truly effect the performance of the dragster. Development of these elapsed time versus speed curves for various lift and drag coefficients allows us to determine a trend as to how these aerodynamic characteristics can improve performance. It was always said that these dragsters want as much down force as possible but from this model it is not necessarily true. What was shown to be the most beneficial is the reduction of the drag and the reduction of the coefficient of lift up to a certain point. The current wings used on top-fuel dragsters produce an enormous amount of down force and along with this comes an enormous amount of induced drag. Designing a wing that will take advantage of the knowledge gained from this model proved to increase the top speed but more importantly reduce the elapsed time which is how you win races.
\qquad

