subject of PhD studies

Géza Pattantyús-Ábrahám Doctoral School of Mechanical Engineering

SUBJECT DATA SHEET AND REQUIREMENTS

last modified: 20th May 2016

TURBULENCE AND ITS MODELLING (PhD)

TURBUELNCIA ÉS MODELLEZÉSE (PhD)

1 Code	Semester Nr. or fall/spring	Contact hours/week	Requirements p / e / s	Credit	Language	
	g	(lect.+semin.+lab.)				
BMEGEÁT4A33	1.(2.*)	2+0+0	e	3	English	
	fall/spring					
*: in case of enrolment in fall						
Subject's responsible:						
Name:	Title:		Affiliation (Department):			
Dr. Gergely KRISTÓF	associate profe	essor Dep	Dept. of Fluid Mechanics			
3. Lecturer:						
Name:	Title:	Affi	Affiliation (Department):			
Dr. Máté Márton LOHÁSZ	invited lecture	r/PhD/ Dep	Dept. of Fluid Mechanics			

4. Thematic background of the subject:

physics, fluid dynamics

5. Compulsory / suggested prerequisites:

Compulsory:

Suggested:

6. Main aims and objectives, learning outcomes of the subject:

The course aims to introduce students to the PhD-level areas of fluid dynamics, according to the individual doctoral research topic and interest, with respect to the following (ch.8.) thematic description, in consultation with the lecturer.

7. Method of education:

lecture 2h/w, and private consultation

8. Detailed thematic description of the subject:

Concept of turbulence.

Properties of turbulence.

Statistical description, higher moments, and visual interpretations, uncertainty of its expected value in turbulent flows, correlation functions, length and time scales.

Reynolds-equation, properties of the Reynolds-stress tensor, transport equation for the Reynolds-stress tensor and for the kinetic energy.

Scales of turbulence, Kolmogorov spectra.

Flow similarity, properties of free shear layer flows and wall boundary layers.

Concept for coherent structures.

Eddy-viscosity models, determination of its coefficients, and their uncertainties.

Large Eddy Simulation.

9. Requirements and grading

a) in term-period

b) in examination period

Written and/or oral exam. Totally max. achievable 100 scores equal to 100% as base of the final grading. Minimum 40 %.

Grading: 0%-39%: fail(1); 40%-54% pass(2), 55%-69%: satisfactory (3), 70%-84%: good(4), 85%-100%: excellent (5)

c) The students are subject to disciplinary measures against the application of unauthorized means at midterms, term-end exams and homework and the application of the 1/2013. (I.30.) Dean's Order must be followed.

10. Retake and repeat

Due to the Code of Studies and Exams of BME. Any further movements are due to the Code of Studies and Exams of BME.

11. Consulting opportunities:

Consultation hours: by email appointments and as it is indicated on the department's website.

12. Reference literature (compulsory, recommended):

• Downloadable materials: www.ara.bme.hu/oktatas/tantargy/NEPTUN/BMEGEAT4A33

13. Home study required to pass the subject:

	Contact hours	28	h/semester
	Home study for the courses	28	h/semester
	Home study for the mid-semester checks	-	h/check
	Preparation of mid-semester homework Home study of the allotted written notes		h/homework
			h/semester
	Home study for the exam		h/semester
	Totally:	90	h/semester

14. The data sheet and the requirements are prepared by:

Name:	Title:	Affiliation (Department):
Dr. Máté Márton LOHÁSZ	invited lecturer /PhD/	Dept. of Fluid Mechanics

