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10. Euler's equation (differential momentum equation) 
 
Inviscid flow: µ = 0 
 
 
 
 
 
 
 
 
 
 
Resultant of forces = mass · acceleration  
Inviscid flow: forces caused by the pressure and field of force.  
 
In x direction:  
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If ρ = const. the unknown variables are: vx, vy, vx, p 
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11. Bernoulli equation 
 
Inviscid flow: µ = 0 
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b) If g = - gradU integral IV = – (U2– U1)  

c) In case of steady flow ( 0
t
v
=

∂
∂ ) integral I =0  

d) intergral III = 0, if  
- v = 0 static fluid 
- rotv = 0 potential flow 
- ds lies in the plane determined by v and rotv vectors  
- ds || v integration along streamlines 
- ds || rotv integration along vortex lines 

e) If .const=ρ  integral V = − −p p2 1

ρ
, if  )p(ρ=ρ , integral V = ( )∫ ρ

2

1

p

p p
dp  

In case of inviscid, steady flow of incompressible fluid ( .const=ρ ), if g = - gradU and integration 
along streamlines:  
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The Bernoulli's sum = const. along streamlines. 

12. Static, dynamic and total pressure  

t
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In stagnation point v = 0, so t
2 pv

2
p =

ρ
+ ∞∞  

2
d v

2
p ∞

ρ
=  dynamic pressure  

p∞  static pressure  
pt total, stagnation  pressure 
 
Bernoulli equation in case of inviscid, steady flow of incompressible fluid, disregarding the field of 
force: the total pressure is constant along streamlines.  
 
13. Euler equation in streamwise ("natural") co-ordinate-system 

 

Steady flow of inviscid (µ = 0) fluid.  e coordinate is tangent to the streamline,  n is normal to it and 
cross the center of curvature, A b binormal coordinate perpendicular to e and n. 
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In e direction  
Force acting on differential fluid particle of edge length db, dn and de (mass: dedndbdm ρ= ) in e 
direction:  
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where ge the e component of the field of force.  

Since the flow is steady only convective acceleration exists, and 0vv bn ==   
e
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In n direction 

R
vdm
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 centripetal force is needed to move dm mass with v velocity along a streamline of a radius 

of curvature R:  
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In b direction 
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In normal co-ordinate direction, disregarding g:   

n
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R
v 2

∂
∂

ρ
=  

Consequences:  
a) if the streamlines are parallel straight lines (R=∞) the pressure doesn't change perpendicular to 

the streamlines,  
b) if the streamlines are curved the pressure changes perpendicular to the streamlines: it increases 

outwards from the center of curvature.  
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                          raindrop 

 

14. Rotating tank 

 

Forced vortex in absolute system, [ ]s/1ω  angular velocity, pA – p0 =?     
3 different ways of solution: 
a) co-rotating co-ordinate system: hydrostatics 
b) absolute system Bernoulli equation; 
c) absolute system, Euler equation in streamwise ("natural") co-ordinate-

system 
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Steady flow, integral I =0, integral II = ( ) 2/vv 2
0
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15. Measurement of flow rate by using Venturi meter 

 

h [m]= f(qv) = ?  ρ and ρM density of water and mercury  
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U-tube manometer: gh)Hm(gp)hH(gp Hg21 ρ++ρ+=+ρ+   gmgh)(pp Hg21 ρ+ρ−ρ=− . 
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1
d
d

gh21
v 4

2

1

Hg

1

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ρ

ρ

=   

Flow rate: hKv
4

d
q 1

2
1

v =
π

=   

16. Unsteady discharge of water from a tank  

 

 



 18

VIVIIIIII
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In point 1 p p1 0= , z H= , v = 0. In point  2 p p2 0= . z = 0, the velocity is ( )tvv2 = . 
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where t/v ∂∂  acceleration vector | t/v ∂∂ | is indicated by a,  t/v ∂∂ || sd ,  t/v ∂∂  and sd  point at 
the same direction.  
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 where gH2vst = .  

 

17. Floating of bodies 
Body volume: ∆V, pressure distribution is characterized by pgrad , Pressure force: ∆ ∆F grad≅ −  p V 
∆ ∆F g V= −ρ . In gravitational field buoyant force = weight of the volume displacement. The buoyant 
force vector crosses the center of displaced volume.  



 19

 
The body is floating if the average density is equal or less than the density of fluid.  
 
Stability of floating body: submarines and ships. 

 

If the center of gravity S is lower than the center of displaced volume K, a moment M arises, 
decreasing the angle of deflection.  
 
If S center of gravity is above the center of displaced volume K a moment is arising to a certain 
angle of deflection decreasing the angle of deflection. 

 

At deflection the position, magnitude of weight and magnitude of buoyant force does not change. 
The line of application of buoyant force displaces. As a consequence of the deflection a wedge-
shaped part of the body (A) emerges from the water and the B part of body sinks. So a couple of 
forces arise, displacing the buoyant force vector. The new line of application crosses the symmetry 
plane in point M (metacenter). If  S is under metacenter M the ship is in stable equilibrium state.  
 

18. Radial-flow fan, Euler equation for turbines 

 

sz: inlet, k: suction nozzle, j: impeller, l: blades, cs: casing, ny: outlet, t: shaft, m: electric motor, M: 
moment, ω: angular velocity.  
Task: increase of total pressure of gas: 
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available performance: tv pqP ∆= , where qv [kg/m3] is the flow rate.  
Bernoulli equation in relative coordinate-system (steady flow of incompressible and inviscid fluid) 
between points 1 and 2 of the same streamline.:  
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If 0v u1 = ⇒ 2u2idt uvp ρ=∆ . 
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19. Theorems for vorticity: Thomson' and Helmholtz' theorems 
 
Thomson' theorem (inviscid fluid) 

        

Circulation: sdv
G
∫=Γ . Temporal change of circulation along closed fluid line ?sdv

dt
d

dt
d

G

==
Γ

∫  If 

gradUg −= and ρ=const. or  ρ=ρ(p), by using Euler equation:   

0sdv
dt
d

G

=∫
  

In flow of incompressible and inviscid fluid in potential field of force no vorticity arises.  
 
Applications:  
Starting and stopping vortex (vortex shedding), making velocity distribution uniform, flow in water 
reservoir 
 

 
 

 

Advrotsdv
AG
∫∫ ==Γ . 

1

2

2

1

1

2

D
D

A
A

)vrot(
)vrot(

=
∆
∆

=
ϑ

ϑ . ( ) 0
y

v
x
v

vrot xy
z =

∂
∂

−
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∂
= .∂vy/∂x<0 ⇒ ∂vx/∂y<0.  

 
Helmholtz' I. theorem  µ = 0  



 22

Fluid vortex line: rot v  × ds  = 0 ,  fluid vortex surface: rot v  × dA  = 0 
 

Since 0sdv
dt
d

G

=∫ , a flowing vortex surface remains 

vortex surface.  
Two vortex sheets intersect each other along a vortex line.  
 
A flowing vortex line, which can be regarded as line of 
intersection of two flowing vortex surfaces, consists of the 
same fluid particles.   

 
Consequence:  The vortex in smoke ring or in cloud of smoke emerging from a chimney preserves 
the smoke.  
 
Helmholtz' II. theorem 
 

Flowing vortex tube 
 

0
21

=+= ∫∫∫ sdvsdvsdv
SSS  

sdvsdv
SS
∫∫ =

21

, 

AdvrotAdvrot
AA
∫∫ =

21

. 

Advrot
A
∫  is constant over all cross sections along a vortex tube and it does not change temporally.  

 
Consequences: the vortex tube is either a closed line (a ring) or ends at the boundary of the flow 
field. A ⇒ 0 rotv  ⇒ ∞.   
 

     
 
 

         
 

 

A
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Induced vortex, tip vortex of finite airfoil.  

Flight of wild-gooses in V shape.  

Vortex in tub after opening the sink.   

Tornado 

 
20.Pressure measurements 
Surface tension 
 

   

 

 

 CL2F =  C [N/m] surface tension coefficient. For water air combination 
]m/N[025.0C = . 

 

12212121 ddsCddsCdsds)pp( α+α=− .  
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⎛
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21
21 R

1
R
1Cppp ,  

In case of spheres RRR 21 ==  ⇒ R/C2p =∆ , and bubbles: R/C4p =∆   

 

If 131223 CCC +> , fluid 1 expands on the surface of fluid 2 (e.g. oil on water.  

 

 

 

dscosCdsCdsC 131223 α+= . 
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131223 C/)CC(cos −=α . °<α⇒> 90CC 1223 , °>α 90  (mercury) Ha 131223 CCC +> , the fluid 
expands over the surface of solid body petroleum gets out of open bottle.   

Capillary rise 

r/cosC2R/C2pp 1313A0 α==− . 

 mgpp A0 ρ=−   

α
ρ

= cos
rg

C2
m 13  

In case of mercury capillary drop.   

 
Measurement of pressure  
 
Manometers (for measuring pressure differences) 
Micromanometers: U-tube manometer p1 - p2 =(ρm - ρt) g h, "inverse" U-tube manometer p1 - p2 

=(ρw - ρa) g h, inclined tube manometer L=H/sinα, relative error: e = ∆s/L =(∆s/H) sinα, bent tube 
manometer (e = const.): 
  

 

Betz-micromanometer 

 

Pressure taps 

 

 
 
 
 
 
 

 

 


