

Budapest University of Technology and Economics Faculty of Mechanical Engineering

Department of Fluid Mechanics http://www.ara.bme.hu/

FINAL PROJECT ASSIGNMENT

CLASSIFIED

Identification	Name: Padayao Jowett Millan				ID: 73612055556	
	Code of the Curriculum:		2NAMW0	Specialisation:		Document ref. number:
	Curriculum:	rriculum: Master Program in Mechanical Engineering Modelling		2NAMW0-FM		GEÁT:2022-2:2NAMW0:QOXO8C
	Final Project issued by:			Final exam organised by:		
	Department of Fluid Mechanics			Department of Fluid Mechanics		
	Supervisor:	Dr. Kristóf Ge	rgely János (71957915589	89), associate professor		

	Title	Model-based optimization of the intake of a side channel pump Oldalcsatornás szivattyú beömlésének modell alapú optimalizálása			
Project Description	Details T	1. Provide a literature review of side channel pump hydraulics, intake channel design, and CFD modeling of side channel pumps. 2. Based on the given sectional drawings, create the baseline geometric model of the pump fluid space neglecting the narrow gaps in Solidworks 2017. Establish 3D model parametrization to allow for scaling the model. 3. Construct a steady state CFD model of the baseline design in ANSYS Fluent system and compare the H-Q characteristic curve of the machine with the available measurement results. Calculate the hydraulic efficiency of the machine as a function of volume flow (eta-Q).			
		4. Based on the model results of the baseline design, determine the geometrical parameters and design variants of the intake channel.			
		5. Create a hydraulic model for machines with modified inlet and examine how the modifications affect the vortex in the pump and the hydraulic efficiency of the pump. Perform the optimization of the inlet channel for maximum pump efficiency, detailing the flow pattern and hydraulic characteristics of the machine with the optimized inlet.			
		6. Prepare your MSc thesis according to the formal requirements.			
	Advisor	Advisor's Affiliation: Flowserve Corp. Sterling Industry Consult GmbH; D-25524 Itzehoe, Lindenstraße 170. Advisor: Rolf Martin FALCH, Manager, FPD Product Engineering - Industrial			

ı	1st subject (group)	2 nd subject (group)	3 rd subject (group)	4 th subject (group)
Final Exam	ZVEGEÁTNW02 Computational Fluid Dynamics	ZVEGEÁTNW03 Fluid Mechanics Measurements	ZVEGEÁTNW19 Vehicle Aerodynamics	ZVEGEÁTNW11 Open Source Computational Fluid Dynamics

	Handed out: 14 February 2022		Deadline: 20 May 2022		
	Compiled by:		d by:	Approved by:	
	Dr. Kristóf Gergely János (71957915589)	Dr. János Vad (signed)		Dr. Gábor Györke (signed)	
u u	Supervisor		ead of Department	Vice-Dean	
Authentication	The undersigned declares that all prerequisites of the Final have been fully accomplished. Otherwise, the present assignment the Final Project is to be considered invalid. Padayao Jowett Millan		,		