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Wall boundary conditions

• Both k and ε or ω require boundary conditions at the walls
• Before introducing the boundary conditions and the
approximate boundary treatment techniques, some theory
about wall boundary layers is required.
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Channel flow

Characteristics
• Flow between two infinite plates ⇒ fully developed
• Channel half width: δ
• Bulk velocity: Ub

def
= 1

δ

∫ δ
0 u dy

• Bulk Reynolds number: Reb
def
= Ub2δ

ν

• Reb > 1800 means turbulence
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Channel flow (contd.)

Streamwise averaged momentum equation:

0 = νd2y2u︸ ︷︷ ︸
dyτl

− dyu′v′︸ ︷︷ ︸
dyτt

−1

ρ
∂xp (1)

The pressure gradient (dxpw ) is balanced by the two shear
stresses: τ = τl + τt
Its distribution is linear:

τ(y) = τw

(
1− y

δ

)
(2)
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Channel flow (contd.)
Two type of shear stresses

The two shear stresses
• The viscous stress is dominant at the wall
• Turbulent stress is dominant far from the wall
• Both stresses are important in an intermediate region
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Two scales of the flow at the wall

Definitions

• Friction velocity: uτ
def
=
√

τw
ρ =

√
− δ
ρdxpw

• Friction Reynolds number: Reτ
def
= uτ δ

ν = δ
δν

• Viscous length scale: δν
def
= ν

uτ

General law of the wall can be characterised:

dyu =
uτ
y
Φ
( y
δν
,
y

δ

)
(3)

Φ is a function to be determined!
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Law of the wall
In wall proximity

It can be assumed that only the wall scale plays a role in the
near wall region:

dyu =
uτ
y
ΦI

( y
δν

)
for y � δ (4)

Wall non-dimensionalisation �+

u+
def
=

u

uτ
(5)

y+
def
=

y

δν
=
yuτ
ν

(6)
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Law of the wall
Velocity

Viscous sub-layer
• Only τl counts
• u+ = y+

• for y+ < 5

Logarithmic layer
• Viscosity is not in the scaling
• ΦI = 1

κ for y � δ and y+ � 1

• Log-law: u+ = 1
κ ln(y

+) +B
• From measurements: κ ≈ 0.41 and B ≈ 5.2
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Law of the wall
Velocity

Outer layer
• Φ depends only on y/δ
• In CFD we want to compute it for the specific cases! ⇒
We do not deal with it.
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Reynolds stress tensor at the wall
uτ scaling

Sharp peaks around y+ = 20
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Reynolds stress tensor at the wall
k scaling

A platau is visible in the log law region.
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TKE budget at the wall

• P/ε ≈ 1 in the log-law region
• P/ε ≈ 1.8 close to the wall
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TKE budget at the wall

• Turbulence is mainly produced in the buffer region
(5 < y+ < 30)

• Turbulence is viscous diffused to the wall
• Turbulence is strongly dissipated at the wall
• Conclusion: ε = νd2y2u @ y = 0
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Numerical treatment of the wall layer, actual BC’s
Low Re treatment

In this treatment the complete boundary layer is resolved
numerically

When to do?
• Low Reynolds number flow, where resolution is feasible
• If boundary layer is not simple, can not be described by law
of the wall

How to do?
• Use a turbulence model incorporating near wall viscous
effects

• Use appropriate wall resolution (y+ < 1)
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Numerical treatment of the wall layer, actual BC’s
High Re treatment

In this treatment the first cell incorporates the law of the wall

When to do?
• High Reynolds number flow, where it is impossible to
resolve the near wall region

• If boundary layer is simple, can be well described by law of
the wall

How to do?
• Use a turbulence models containing law of the wall BC
• Use appropriate wall resolution (30 < y+ < 300)
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Wall functions for RANS in practice (U , νt)

• Velocity at the wall:
• Dirichlet BC, no slip: U (y = 0) = 0

• Turbulent viscosity (for the wall adjacent cells):
• Wall shear-stress (friction velocity) by definition:

τw = u2τ = νt
∂U

∂y

• Laminar case (y+ ≤ y+lam):

U+ = y+ → νt = 0

• Turbulent case (y+ > y+lam):

U+ = κ ln
(
Ey+

)
→ νt = ν

(
κy+

ln (Ey+)
− 1

)
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Wall functions for RANS in practice (k, ε, Pk)

• Turbulent kinetic energy (for the wall):

• Neumann BC:
∂k

∂y
= 0

• Turbulent kinetic energy dissipation (for the wall adjacent
cells):

• Equilibrium assumption:

Pk = νt

(
∂U

∂y

)2

= Cµ
k2

ε

(
∂U

∂y

)2

= ε

• Implementation:

ε =
C0.75
µ k1.5

κy
and Pk = (ν + νt)

∣∣∣∣∂U∂y
∣∣∣∣C0.25

µ k0.5

κy
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Numerical treatment of the wall layer, actual BC’s
Clever laws

The mixture of the two methods is developed:
• to enable the engineer not to deal with the wall resolution
• usually the mixture of the two method is needed,
depending on actual position in the domain

Resolution requirements

At any kind of treatment the boundary layer thickness (δ) has
to resolved by ≈ 20 cells to ensure accuracy.
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Határrétegek - turbulencia modellek
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Határrétegek - turbulencia modellek
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Large-Eddy Simulation
Difference between modelling and simulation

Simulation
In the simulation the turbulence phenomena is actually resolved
by a numerical technique, by solving the describing equations

Modelling
In the modelling of turbulence the effects of turbulence are
modelled relying on theoretical and experimental knowledge.
In the computation a reduced description of turbulence is
carried out
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Direct Numerical Simulation = DNS

The NS equations (describing completely the turbulence
phenomena) are solved numerically

Difficulties
• The scales where the dissipation is effective are very small

• The size of the smallest scales are Reynolds number
dependent

• Simulation is only possible for academic situations (e.g.:
HIT on 64 ·109 cells)
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Concept of LES

Compromise between RANS and DNS
• RANS: feasible but inaccurate
• DNS: accurate but infeasible

The large scales are import to simulate
• The large scales of the turbulent flow are boundary
condition dependent, they needs to be simulated

• The small scales of turbulence are more or less universal
and can be modelled ‘easily’

• The removal of the small scales form the simulation reduce
the computational cost remarkably
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Filtering

How to develop the equations?
How to separate between large and small scales?

Spatial filtering, smoothing using a kernel function

〈ϕ〉 (xj , t)
def
=

∫
V
G∆(ri;xj) ϕ(xj − ri, t)dri (7)
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Filtering kernel

• G∆ is the filtering kernel with a typical size of ∆.
• G∆ has a compact support (its definition set where the
value is non-zero is closed) in its first variable

• To be the filtered value of a constant itself it has to be
true: ∫

V
G∆(ri;xj)dri = 1 (8)

• If G∆(ri;xj) is homogeneous in its second variable and
isotropic in its first variable than G∆(|ri|) is a function of
only one variable
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Filtering kernel
Examples
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Filtering
Physical space

Fluctuation:
ϕ̃

def
= ϕ− 〈ϕ〉 (9)

〈ϕ̃〉 6= 0, a difference compared to Reynolds averaging
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Filtering
Spectral space

Recall: the cutting wavenumber (κc), below which modelling is
needed
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Filtered equations

• If using the previously defined (homogeneous, isotropic)
filter

• Averaging and the derivatives commute (exchangeable)

∂i 〈ui〉 = 0 (10)

∂t 〈ui〉+ 〈uj〉 ∂j 〈ui〉 = −1

ρ
〈p〉+ ν∂j∂j 〈ui〉 − ∂jτij (11)

• 3D (because turbulence is 3D)
• unsteady (because the large eddies are unsteady)
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Sub Grid Scale stress

τij is called Sub-Grid Scale stress SGS from the times when
filtering was directly associated to the grid

τij
def
= 〈uiuj〉 − 〈ui〉 〈uj〉 (12)

• It represents the effect of the filtered scales
• It is in a form a stress tensor
• Should be dissipative to represent the dissipation on the
filtered small scale
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Eddy viscosity model

• Same as in RANS
•

τij −
1

3
τkkδij = −2νt 〈sij〉 (13)

• Relatively a better approach since the small scales are more
universal

• Dissipative if νt > 0.
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Smagorinsky model

•
νt = (Cs∆)2| 〈S〉 | (14)

•
| 〈S〉 | def

=
√
2sijsij (15)

• Cs Smagorinsky constant to b determined
• using spectral theory of turbulence
• using validations on real flow computations

• ∆ to be prescribed
• Determine the computational cost (if too small)
• Determine the accuracy (if too big)
• 80% of the energy is resolved is a compromise
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Scale Similarity model

Let us assume that the cuted small scales are similar to the kept
large scales!
A logical model:

τij
def
= 〈〈ui〉 〈uj〉〉 − 〈〈ui〉〉 〈〈uj〉〉 (16)
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Properties
• It is not dissipative enough
• It gives feasible shear stresses (from experience)
• Logical to combine with Smag. model!
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Dynamic approach

• The idea is the same as in the scale similarity model
• The theory is more complicated
• Any model can be made dynamic
• Dynamic Smagorinsky is widely used (combining the two
advantages)
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Numerical issues

• The spatial numerical schemes are used on the border of
their capabilities (wave length = cell siez), when
Delta = h (h = cell size)

• The numerical schemes remarkably influence the result
• Grid in-dependency as a function of h/∆: practically
impossible
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Boundary Conditions
Periodicity

• Periodicity is used to model infinite long domain
• The length of periodicity is given by the length scales of
turbulence
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Boundary Conditions
Inlet

• Much more difficult than in RANS
• Turbulent structures should be represented

• Vortices should be synthesized
• Separate precursor simulation to provide “real” turbulence
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Boundary Conditions
Wall

y+ ≈ 1 (17)
x+ ≈ 50 (18)
z+ ≈ 10− 20 (19)
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Results
Time averaged quantities

• Can be used similarly as results of RANS
• In a lucky situation it is more accurate than the RANS
result, in case of bad use can be much more inaccurate
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Results
Instantaneous structures

• The movement of the vortices can be tracked
• Enables the control of turbulence
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Kérdések

Thanks for your attention!
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