

Turbulence II.

Miklós Balogh

Scales

INE eq.

Modelling

Boundaries

Turbulence modelling II.

Miklós Balogh

Budapest University of Technology and Economics
Department of Fluid Mechanics

November 13, 2018

Many scales of turbulence

Turbulence II.

> Miklós Balogh

Scales

TKE ed

Modellin

Boundar

Density variation visualise the different scales of turbulence in a mixing layer

Goal: Try to find some rules about the properties of turbulence at different scales

Kinetic energy

Turbulence П.

> Miklós Balogh

Scales

Modelling

Kinetic energy:

$$E \stackrel{\mathsf{def}}{=} \frac{1}{2} u_i u_i \tag{1}$$

Its Reynolds decomposition:

$$E = \frac{1}{2}u_iu_i = \frac{1}{2}(\overline{u_i}\,\overline{u_i} + 2u_i'\overline{u_i} + u_i'u_i') \tag{2}$$

Its Reynolds average

$$\overline{E} = \underbrace{\frac{1}{2}(\overline{u_i}\,\overline{u_i})}_{\hat{E}} + \underbrace{\frac{1}{2}(\overline{u_i'u_i'})}_{k} = \hat{E} + k \tag{3}$$

- The kinetic energy of the mean flow: \hat{E}
- The kinetic energy of the turbulence: k (Turbulent Kinetic Energy, TKE)

Richardson energy cascade The poem

Turbulence II.

> Miklós Balogh

Scales

TKL eq.

Modelling

Boundaries Inlet

Lewis Fry Richardson (1920):

"Big whirls have little whirls, that feed on their velocity; and little whirls have lesser whirls, and so on to viscosity."

"Nagy örvény kisebbet plántál, melyet sebességével táplál; majd az még kisebbet szülvén, viszkozításba tűnik szürkén."

Richardson energy cascade Vortex scales

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

_ . .

Boundarie:

High Re flow is investigated

- ullet Typical velocity of the flow ${\cal U}$
- ullet Typical length scale of the flow ${\cal L}$
- Corresponding Reynolds number $(\mathcal{R}e = \frac{\mathcal{UL}}{\nu})$ is high

Turbulence is made of vortices of different sizes

Each class of vortex has:

- length scale: l
- velocity scale: u(l)
- time scale: $\tau(l) = l/u(l)$

Richardson energy cascade The big scales

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

ivioueiiiiį

Boundarie

Biggest vortices

- size $l_0 \sim \mathcal{L}$
- velocity $u_0 = u_0(l_0) \sim u' = \sqrt{2/3k} \sim \mathcal{U}$
- $\Rightarrow Re = \frac{u_0 l_0}{\nu}$ is also high

Fragmentation of the big vortices

- ullet High Re corresponds to low viscous stabilisation
- Big vortices are unstable
- Big vortices break up into smaller ones

Richardson energy cascade To the small scales

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

Boundarie:

Inertial cascade

- As long as Re(l) is high, inertial forces dominate, the break up continues
- At small scales $Re(l) \sim 1$ viscosity starts to be important
 - The kinetic energy of the vortices dissipates into heat

Richardson energy cascade Connection between small and large scales

Turbulence П.

Miklós Balogh

Scales

TKE ea.

Modelling

Dissipation equals production

- Dissipation is denoted by ε
- Because of the cascade can be characterised by large scale motion
- Dissipation: $\varepsilon \sim \frac{\text{kin. energy}}{\text{timescale}}$ at the large scales

• By formula:
$$\varepsilon=\frac{u_0^2}{l_0/u_0}=\frac{u_0^3}{l_0}$$

Transport equation of k Definitions 1

Turbulence П.

> Miklós Balogh

TKE ea.

Modelling

NS symbol

For the description of development rules, it is useful to define the following NS symbol:

$$NS(u_i) \stackrel{\mathsf{def}}{=} \partial_t u_i + u_j \partial_j u_i = \underbrace{-\frac{1}{\rho} \partial_i p + \nu \partial_j s_{ij}}_{\partial_j t_{ij}} \tag{4}$$

where: $s_{ii} \stackrel{\text{def}}{=} \frac{1}{2} (\partial_i u_i + \partial_i u_i)$ is the deformation (rate of strain) part of the derivative tensor $\partial_i u_i$.

Transport equation of k Definitions 2

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

_ . .

Boundarie

Let us repeat the development of the Reynolds equation!

$$\overline{NS(\overline{u_i} + u_i')} \tag{5}$$

$$\partial_{t}\overline{u_{i}} + \overline{u_{j}}\,\partial_{j}\overline{u_{i}} = \partial_{j}\underbrace{\left[-\frac{1}{\rho}\overline{p}\,\delta_{ij} + \nu\overline{s}_{ij} - \overline{u'_{i}u'_{j}}\right]}_{\overline{T_{ij}}} \tag{6}$$

The TKE equation

Turbulence П.

> Miklós Balogh

Scales

TKE eq.

Modelling

Taking the trace of

$$\overline{\left(NS(u_i) - \overline{NS(u_i)}\right)u'_j + \left(NS(u_j) - \overline{NS(u_j)}\right)u'_i}$$

$$\partial_{t}k + \overline{u_{j}} \, \partial_{j}k = \underbrace{-a_{ij}\overline{s_{ij}}}_{\text{Production}} + \underbrace{\partial_{j}\left[\overline{u_{j}'\left(\frac{p'}{\rho} + k'\right)} - \nu\overline{u_{i}'s_{ij}'}\right]}_{\text{Transport}} - \underbrace{\varepsilon}_{\text{Dissipation}}$$
(7)

- Dissipation: $\varepsilon \stackrel{\text{def}}{=} 2\nu \overline{s'_{ij}s'_{ij}}$
- \bullet Anisotropy tensor: $a_{ij} \stackrel{\text{def}}{=} \overline{u_i' u_j'} \frac{1}{3} \, \overline{\underline{u_l' u_l'}} \, \delta_{ij}$

Deviator part of the Reynolds stress tensor

The TKE equation Meaning of the terms

Turbulence II.

> Miklós Balogh

Jules

TKE eq.

Modelling

Boundarie

Production

- Expression: $\mathcal{P} \stackrel{\text{def}}{=} -a_{ij}\overline{s_{ij}}$
- Transfer of kinetic energy from mean flow to turbulence
 - The same term with opposite sign in the equation for kin. energy of mean flow
- The mechanism to put energy in the 'Richardson' cascade
- Happens at the large scales

The TKE equation Meaning of the terms (contd.)

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

iviouciiiiį

Inlet

Dissipation

- Expression: $\varepsilon \stackrel{\text{def}}{=} 2\nu \overline{s'_{ij}s'_{ij}}$
- Conversion of kinetic energy of turbulence to heat
 - Work of the viscous stresses at small scale (s'_{ij})
- The mechanism to draw energy from the 'Richardson' cascade
- Happens at the small scales

 $\mathcal{P}=\varepsilon$ if the turbulence is homogeneous (isotropic), as in the "Richardson" cascade

The TKE equation Meaning of the terms (contd.)

Turbulence II.

> Miklós Balogh

Scale

TKE eq.

Modelling

. .

Boundarie:

Transport

• Expression:
$$\partial_j \left[\overline{u_j' \left(\frac{p_j'}{\rho} + k' \right)} - \nu \overline{u_i' s_{ij}'} \right]$$

- Transport of turbulent kinetic energy in space
 - The expression is in the form of a divergence $(\partial_j \Box_j)$
 - Divergence can be reformulated to surface fluxes (G-O theorem)

Idea of RANS modelling

Turbulence II.

> Miklós Balogh

.

TKE ea.

Modelling

Modelling

Boundari

- Solving the Reynolds averaged NS for the averaged variables $(\overline{u}, \overline{v}, \overline{w}, \overline{p})$
- \bullet The Reynolds stress tensor $\overline{u_i'u_j'}$ is unknown and has to be modelled
- Modelling should use the available quantities $(\overline{u}\,,\overline{v}\,,\overline{w}\,,\overline{p}\,)$

Usefulness

- If the averaged results are useful for the engineers
- i.e. the fluctuation are not interesting "only" their effect on the mean flow
- If modelling is accurate enough

Eddy Viscosity modell

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

Boundarie

Idea

- Effect of turbulence is similar to effect of moving molecules in kinetic gas theory
- The exchange of momentum between layers of different momentum is by the perpendicularly moving molecules
- Viscous stress is computed by: $\Phi_{ij} = 2\nu S_{ij}$

16/35

Eddy Viscosity model (contd.)

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

ivioueiiiiį

Boundarie

In equations...

- Only the deviatoric part is modelled
- The trace (k) can be merged to the pressure (modified pressure), and does not need to be modelled
- Modified pressure is used in the pressure correction methods to satisfy continuity (see Poisson eq. for pressure)

$$\overline{u_i'u_j'} - \frac{2}{3}k\delta_{ij} = -2\nu_t \overline{S_{ij}}$$
 (8)

Eddy Viscosity

Turbulence II.

> Miklós Balogh

Scale

TKE eq.

Modelling

Boundarie

Viscosity is a product of a length scale (l') and a velocity fluctuation scale (u')

- The length scale has to be proportional to the distance, what the fluid part moves by keeping its momentum
- The velocity fluctuation scale should be related to the velocity fluctuation caused by the motion of the fluid part

$$\nu_t \sim l'u' \tag{9}$$

Newer results supporting the concept

Coherent structure view of turbulence, proves that there are fluid parts (vortices) which keep their properties for a while, when moving

Two equations models

Turbulence II.

> Miklós Balogh

Scale

TKE eq.

Modelling

Boundari

• Length (l') and velocity fluctuation scales (u') are properties of the flow and not the fluid, they are changing spatially and temporally

PDE's for describing evolutions are needed

Requirements for the scales

- Has to be well defined
- Equation for its evolution has to be developed
- Has to be numerically 'nice'
- Should be measurable easily to make experimental validation possible

k-e modell

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

Boundarie

Velocity fluctuation scale

- TKE is characteristic for the velocity fluctuation
- It is isotropic (has no preferred direction)

$$u' \sim \sqrt{k}$$
 (10)

Length scale

- Integral length scale is well defined (see correlations)
- No direct equation is easy to develop
- Length scale is computed through the dissipation

Recall:
$$\varepsilon=\frac{u_0^3}{l_0}\Rightarrow l'\sim\frac{k^{3/2}}{\varepsilon}$$

Equation for the eddy viscosity

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

Boundaries

$$\nu_t = C_\nu \frac{k^2}{\varepsilon} \tag{11}$$

 $C_{
u}$ is a constant to be determined by theory or experiments...

Our status...?

• We have two unknowns (k, ε) instead of one (ν_t)

21/35

k model equation

Turbulence II.

> Miklós Balogh

cales

TKE eq.

Modelling

Boundarie

Equation for k was developed, but there are unknown terms:

$$\partial_{t}k + \overline{u_{j}} \, \partial_{j}k = \underbrace{-a_{ij}\overline{s_{ij}}}_{\text{Production}} + \underbrace{\partial_{j}\left[\overline{u_{j}'\left(\frac{p'}{\rho} + k'\right)} - \nu\overline{u_{i}'s_{ij}'}\right]}_{\text{Transport}} - \underbrace{\varepsilon}_{\text{Dissipation}}$$
(12)

Production

Production is directly computable, by using the eddy viscosity hypothesis

$$\mathcal{P} = -a_{ij}\overline{S_{ij}} = 2\nu_t \overline{S_{ij}} \overline{S_{ij}} \tag{13}$$

k model equation

Turbulence II.

> Miklos Balogh

Scale

TKE eq.

Modelling

_ . .

Boundarie

Dissipation

Separate equation will be derived

Transport $\partial_j T_j$

Can be approximated by gradient diffusion hypothesis

$$T_j = \frac{\nu_t}{\sigma_k} \partial_j k \tag{14}$$

- σ_k is of Schmidt number type to rescale ν_t to the required diffusion coeff.
 - To be determined experimentally

Summarised k model equation

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

Poundarie

$$\partial_t k + \overline{u_j} \, \partial_j k = 2\nu_t \overline{S_{ij}} \, \overline{S_{ij}} \, -\varepsilon - \partial_j \left(\frac{\nu_t}{\sigma_k} \partial_j k \right) \tag{15}$$

- Everything is directly computable (except ε)
- The LHS is the local and convective changes of k
 - Convection is an important property of turbulence (it is appropriately treated by these means)

Model equation for ε

Turbulence П.

> Miklós Balogh

TKE ea.

Modelling

- It is assumed that it is described by a transport equation
- Instead of derivation, based on the k equation

$$\partial_t \varepsilon + \overline{u_j} \, \partial_j \varepsilon = C_{1\varepsilon} \mathcal{P} \frac{\varepsilon}{k} - C_{2\varepsilon} \varepsilon \frac{\varepsilon}{k} - \partial_j \left(\frac{\nu_t}{\sigma_{\varepsilon}} \partial_j \varepsilon \right) \tag{16}$$

- Production and dissipation are rescaled $(\frac{\varepsilon}{\iota})$ and 'improved' by constant coefficients $(C_{1\varepsilon}, C_{2\varepsilon})$
- Gradient diffusion for the transport using Schmidt number of σ_{ε}
- The ε equation is not very accurate! :)

Constants of the standard k-e model

Turbulence II.

> Miklós Balogh

Scales

TKE ec

Modelling

Boundarie

 $C_{\nu} = 0.09 \tag{17}$

$$C_{1\varepsilon} = 1.44 \tag{18}$$

$$C_{2\varepsilon} = 1.92 \tag{19}$$

$$\sigma_k = 1 \tag{20}$$

$$\sigma_{\varepsilon} = 1.3$$
 (21)

Example for the constants Homogeneous turbulence

Turbulence ш.

> Miklós Balogh

TKE ea.

Modelling

$$\mathsf{d}_t k = \mathcal{P} - \varepsilon \tag{22}$$

$$d_{t}k = \mathcal{P} - \varepsilon$$

$$d_{t}\varepsilon = C_{1\varepsilon}\mathcal{P}\frac{\varepsilon}{k} - C_{2\varepsilon}\varepsilon\frac{\varepsilon}{k}$$
(22)

27 / 35

Example for the constants Decaying turbulence

Turbulence II.

> Miklós Balogh

. .

TKE eq.

Modelling

wodellin

Boundarie

Since P = 0 the system of equations can be solved easily:

•
$$k(t) = k_0 \left(\frac{t}{t_0}\right)^{-n}$$

•
$$\varepsilon(t) = \varepsilon_0 \left(\frac{t}{t_0}\right)^{-n-1}$$

•
$$n = \frac{1}{C_{2\varepsilon} - 1}$$

• n is measurable 'easily'

k- ω modell

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

Boundarie

• k equation is the same

- $\omega \stackrel{\text{def}}{=} \frac{1}{C_{\nu}} \frac{\varepsilon}{k}$ Specific dissipation, turbulence frequency (ω)
- equation for ω similarly to ε equation
 - transport equation, with production, dissipation and transport on the RHS
- ullet ω equation is better close to walls
- ullet arepsilon equation is better at far-field
- \Rightarrow SST model blends the two type of length scale equations, depending on the wall distance

Required Boundary Conditions

Turbulence II.

> Miklós Balogh

Boundaries

The turbulence model PDE's are transport equations, similar to the energy equation

- Local change
- Convection
- Source terms
- Transport terms

Miklós Balogh Turbulence II. November 13, 2018 30 / 35

Inlet Boundary Conditions

Turbulence II.

> Miklós Balogh

Scale

TKE eq.

Modelling

Boundario

- Neumann or Dirichlet or mixed type of BC can be used generally
- Inlet is usually Dirichlet (specified value)

Final goal

• How to prescribe k and ε or ω at inlet boundaries?

Approximation of inlet BC's Turbulence intensity

Turbulence II.

> Miklós Balogh

Scale

TKE eq.

Modelling

Boundarie

Boundaries Inlet

To use easy quantities, which can be guessed

Develop equations to compute k and ε or ω from quantities, which can be guessed by engineers

Turbulence intensity

$$Tu\stackrel{\mathsf{def}}{=} \frac{\underline{u'}}{\overline{u}} = \frac{\sqrt{2/3k}}{\overline{u}}$$

32 / 35

Approximation of inlet BC's Length scale

Turbulence II.

> Miklos Balogh

Scales

TKE ed

Modelling

Daumdaula

Boundarie:

Length scale

$$l' \sim \frac{k^{3/2}}{\varepsilon} \Rightarrow \varepsilon$$

- From measurement (using Taylor hypothesis)
- Law of the wall (later)
- Guess from hydraulic diameter $l \approx 0.07 d_H$

Importance of inlet BC's

Turbulence II.

> Miklós Balogh

Scales

TKE eq.

Modelling

,

Boundarie Inlet

If turbulence is governing a flow

- Example: Atmospheric flows, where geometry is very simple (flat land, hill) turbulence is complex
 - by spatial history of the flow
 - over rough surface
 - including buoyancy effects
- Sensitivity to turbulence at the inlet has to be checked
 - the uncertainty of the simulation can be recognised
 - measurement should be included
 - the simulation domain should be extended upstream

Questions?

Turbulence ш.

> Miklós Balogh

Inlet

Thanks for your attention!

35/35