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History - Leonardo da Vinci, ca. 1500

Leonardo da Vinci (translation: Piomelli in Lumley, J.L., 1997):
"Observe the motion of the surface of the water, which resembles that of hair,
which has two motions, of which one is caused by the weight of the hair, the
other by the direction of the curls; thus the water has eddying motions, one
part of which is due to the principal current, the other to random and reverse
motion"
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Art - Vincent van Gogh : Starry night, 1889
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Science - Reynolds experiment, 1883
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Science - Quotations

Horace Lamb, 1932
“I am an old man now, and when I die and go to heaven there
are two matters on which I hope for enlightenment. One is
quantum electrodynamics, and the other is the turbulent
motion of fluids. And about the former I am rather optimistic.”

Peter Bradshaw, 1994
“Turbulence was probably invented by the Devil on the seventh
day of Creation when the Good Lord wasn’t looking.”
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Motivation

Why to deal with turbulence in a CFD course?
• Most of the equations considered in CFD are model
equations

• Turbulence is a phenomena which is present in ≈ 95% of
CFD applications

• Turbulence can only be very rarely simulated and usually
has to be modelled

• Basics of turbulence are required for the use of the models
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Our limitations, simplifications

Following effects are not considered:

• density variation (ρ = const.)
• Shock wave and turbulence interaction excluded
• Buoyancy effects on turbulence not treated

• viscosity variation (ν = const.)
• effect of body forces (gi = 0)

• Except free surface flows, gravity has no effect, can be
merged in the pressure
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Definition

Precise definition?
• No definition exists for turbulence till now
• Stability, chaos theory are the candidate disciplines to
provide a definition

• But the describing PDE’s are much more complicated to
treat than an ODE

• Last unsolved problem of classical physics (‘Is it possible to
make a theoretical model to describe the statistics of a
turbulent flow?’)

• Engineers still can deal with turbulence
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Properties

Instead of a definition
• Properties of turbulent flows will be summarized
• These characteristics can be used to:

• Distinguish between laminar (even unsteady) and turbulent
flow

• Find path toward the investigation of turbulence
• Understanding the importance of turbulence in engineering

problems
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High Reynolds number

Reynolds number

• Re = UL
ν = Finertial

Fviscous

• high Re number ←→ viscous forces are small
• But inviscid flow is not turbulent

Role of Re
• Reynolds number is the bifurcation (stability) parameter of
the flow

• Recr ≈ 2300 for pipe flows
• Re > Recr ⇒ flow becomes unstable, turbulent
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Disordered, chaotic

• Terminology of dynamic systems
• Strong sensitivity on initial (IC) and boundary (BC)
conditions

• Statement about the ‘stability’ of the flow
• PDE’s (partial differential equations) have infinite times
more degree of freedom (DoF) than ODE’s (ordinary
differential equations)

• Much more difficult to be treated
• Can be the candidate to give a definition of turbulence

• The tool to explain difference between turbulence and
‘simple’ laminar unsteadiness
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Continuous spatial spectrum

Spatial spectrum
• Spatial spectrum is analogous to temporal, used to defined
via Fourier transformation

• Practically, periodic or infinite long domain is more difficult
to find

• Visually: Flow features of every size are present (between
the bounds of common sense)

Counter-example
Acoustic waves have spiked spectrum, with sub and super
harmonics.
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3D phenomena

• Vortex stretching (see e.g. Advanced Fluid Dynamics) is
only present in 3D flows.

• In 2D there is no velocity component in the direction of
the vorticity to stretch vortices.

• Stretching is responsible for scale reduction,
• and vorticity enhancement.

Averaged flow can be 2D
• An unsteady flowfield must be 3D
• The (Reynolds or time) averaged flowfield can be 2D

• Spanwise fluctuations are averaged to zero, but they are
playing role in the creation of streamwise, and wall normal
fluctuations.
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Unsteady

Turbulent flow is unsteady, but unsteadiness does not mean
turbulence

Stability of unsteady flow can be different
• In an unsteady laminar pipe flow (e.g.
500 < Reb(t) < 1000), the dependency on small
perturbations is smooth and continuous

• In an unsteady turbulent pipe flow (e.g.
5000 < Reb(t) < 5500), the dependency on small
perturbations is strong
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Continuum phenomena

• Can be described by the continuum Navier-Stokes (NS)
equations

• I.e. molecular phenomena is not involved as it was thought
100 years ago

Conclusions
1 Can be simulated by solving the NS equations (Direct

Numerical Simulation = DNS)
2 A smallest existing length scales of turbulence are

remarkably bigger than the molecular scales
3 There are cases, where molecular effects are important

(re-entry capsule → Boltzmann eq.)
4 Turbulence is not fed by molecular resonations, but it is a

property (stability type) of the solution of the NS
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Dissipative

Dissipative
• Def: Conversion of mechanical (kinetic energy) to heat
(raise the temperature)

• Always present in turbulent flows
• It happens at small scales of turbulence, where viscous
forces are important compared to inertia

• It is a remarkable difference compared to wave motion,
where dissipation is not of primary importance
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Vortical

Turbulent flows are always vortical
• Since vortex stretching is responsible for scale reduction
• Towards dissipation, which is only active at the smallest
scales

Miklós Balogh Turbulence I. November 6, 2018 18 / 45



Turbulence I.

Miklós
Balogh

Preface

Definition

Notations

Statistics

Reynolds
equations

Diffusive

Diffusive property, the engineering consequence
• By means of averaged turbulent quantities, transfer
intensities are increased

• E.g. transfer coefficients are increased (e.g. λ)
• Nusselt number is increased

• By means of averaged turbulent fields, transfer coefficients
are increased

• Turbulent viscosity (momentum transfer) is increased
• Turbulent heat conduction coefficient is increased
• Turbulent diffusion coefficients are increased
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Has history, flow dependent, THE TURBULENCE
does not exist

As formulated in the last unsolved problem of classical physics
no general rule of the turbulence could be developed till now.

No universal theory of turbulence has been discovered
• Turbulent flows can be of different type, e.g.:

• They can be boundary condition dependent (constraints)
• They depend on upstream conditions (spatial history)
• They depend on temporal history

Miklós Balogh Turbulence I. November 6, 2018 20 / 45



Turbulence I.

Miklós
Balogh

Preface

Definition

Notations

Statistics

Reynolds
equations

Summarized properties

• High Reynolds number
• Disordered, chaotic
• Continuous spatial spectrum
• Spatial and temporal phenomena (4D)
• Continuum phenomena (not molecular)
• Vortical
• Dissipative, Diffusive
• Has history (spatial and temporal)
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Notations

Directions
• x, u: Streamwise direction
• y, v: Wall normal direction, points to the highest gradient
• z, w: Bi normal to x, y, spanwise direction

Index notation
x = x1, y = x2, z = x3 u = u1, v = u2, w = u3

Partial derivatives

∂j
def
= ∂

∂xj
∂t

def
= ∂

∂t
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Summation convention

Summation is carried out for double indices for the three spatial
directions.

Very basic example
Scalar product:

aibi
def
=

3∑
i=1

aibi (1)
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NS as example

Continuity eq. in vectorial form and with short notation

∂ρ

∂t
+ div(ρv) = 0 (2)

∂tρ+ ∂iui = 0 (3)

Momentum eq. in vectorial form and with short notation

∂u

∂t
+ u · ∇u = g − 1

ρ
∇p+ ν

[
∇2u+

1

3
∇ (∇ · u)

]
(4)

∂tui + uj∂jui = gi −
1

ρ
∂ip+ ν

[
∂j∂jui +

1

3
∂i (∂juj)

]
(5)
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Statistical description

The ‘simple’ approach
Turbulent flow can be characterised by its time average and the
fluctuation compared to it

Problems of this approach
• How long should be the time average?
• How to distinguish between unsteadiness and turbulence?
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Statistical description
Examples

Flow examples
• Turbulent pipe flow having (Re >> 2300), driven by a
piston pump (sinusoidal unsteadiness)

• Von Kármán vortex street around a cylinder of Re = 105,
where the vortices are shedding with the frequency of
St = 0.2

Difficult to distinguish between turbulence and unsteadiness
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Ensemble average

Why to treat deterministic process by statistics?
• NS equations are deterministic (at least we believe, not
proven generally)

• I.e. the solution is determined by IC’s and BC’s
• Statistical description is useful because of the chaotic
behaviour

• The high sensitivity to the BC’s and IC’s
• Possible to treat statistically the result with similar (but

not identical) set of BC’s and IC’s
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Ensemble prediction (perturbed IC’s)
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Statistics

Solution as a statistical variable

ϕ = ϕ(x, y, z, t, i) (6)

Index i corresponds to similar but not identical BC’s and IC’s

Density function
• Shows the ‘probability’ of a value of ϕ.

f(ϕ) (7)

• It is normed: ∫ ∞
−∞

f(ϕ) dϕ = 1 (8)
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Mean value

Expected value

ϕ(x, y, z, t) =

∫ ∞
−∞

ϕ(x, y, z, t) f
(
ϕ(x, y, z, t)

)
dϕ (9)

Average

ϕ(x, y, z, t) = lim
N→∞

1

N

N∑
i=1

ϕ(x, y, z, t, i) (10)
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Reynolds averaging

Reynolds decomposition
Since the ensemble averaging is called Reynolds averaging, the
decomposition is named also after Reynolds

ϕ = ϕ + ϕ′ (11)

Fluctuation

ϕ′
def
= ϕ− ϕ (12)
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Properties of the averaging

Linearity

aϕ+ bψ = aϕ + bψ (13)

The Reynolds averaging acts only once

ϕ = ϕ (14)

Average of fluctuations is zero

ϕ′ = 0 (15)

Commutative to derivation

∂ϕ = ∂ϕ
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Deviation

Deviation
• First characteristics of the fluctuations
•

σϕ =

√
ϕ′2 (16)

• Also called as RMS: ϕrms
def
= σϕ
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Connection between time and ensemble average

Ergodicity
Time and ensemble averages are equal. I.e. the statistics are
independent from the initial condition.

Average is the same, deviation... ?

ϕ̂(T ) =
1

T

∫ T

0
ϕ dt (17)

ϕ̂(T ) =
1

T

∫ T

0
ϕ dt = ϕ (18)
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Covariance

Covariance

Rϕψ = Rϕψ(x, y, z, t, δx, δy, δz, τ) =

= ϕ′(x, y, z, t)ψ′(x+ δx, y + δy, z + δz, t+ τ)

Auto covariance
• If ϕ = ψ covariance is called auto-covariance
• E.g. Time auto covariance:

Rϕϕ(x, y, z, t, 0, 0, 0, τ) (19)
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Correlation

Correlation
Non-dimensional covariance

ρϕψ(x, y, z, t, δx, δy, δz, τ) =
Rϕψ

σϕ(x,y,z,t)σψ(x+δx,y+δy,z+δz,t+τ)
(20)
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Integral time scale

Integral time scale

Tϕψ(x, y, z, t) =

∫ +∞

−∞
ρϕψ(x, y, z, t, 0, 0, 0, τ) dτ (21)
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Taylor frozen vortex hypothesis

It is much more easy to measure the integral time scale
(hot-wire) than the length scale (two hot-wires at variable
distance)

Assumptions
• The flow field is completely frozen, characterised by the
mean flow (U)

• The streamwise length scale can be approximated, by
considering the temporal evolution of the frozen flowfield

Taylor approximated streamwise length scale

Lx = TU (22)
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Reynolds equations

The Reynolds averaged NS equations (RANS) will be developed.
The RANS equations are also called as Reynolds equations.

Recipe
• Averaging the equations,
• where the variables are substituted by their Reynolds
decomposed form
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Reynolds Averaged Continuity

The original equation
∂iui = 0

Development:

∂iui =

= ∂iui

= ∂iui + u′i
= ∂iui

= ∂iui = 0 (23)

Same equation but for the average!

Miklós Balogh Turbulence I. November 6, 2018 40 / 45



Turbulence I.

Miklós
Balogh

Preface

Definition

Notations

Statistics

Reynolds
equations

Momentum equations

Derivation
• Same rules applied to the linear term (no difference only )
• Non-linear term is different

Miklós Balogh Turbulence I. November 6, 2018 41 / 45



Turbulence I.

Miklós
Balogh

Preface

Definition

Notations

Statistics

Reynolds
equations

Averaging of the non-linear term (convective
acceleration)

uj∂jui =

= ∂j(ujui)

= ∂jujui

= ∂j(uj + u′j)(ui + u′i)

= ∂j

(
uj ui + ui u′j + uj u′i + u′ju

′
i

)
= ∂j

(
uj ui + u′ju

′
i

)
= ∂j

(
uj ui

)
+ ∂ju′ju

′
i

= uj ∂jui + ∂ju′iu
′
j (24)
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Reynolds equations

Continuity equation
∂iui = 0

Momentum equation

∂tui + uj ∂jui = −1

ρ
∂ip + ν∂j∂jui − ∂ju′iu′j (25)

Reynold stress tensor

u′iu
′
j (26)

Or multiplied by ρ, or −1 times
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Stresses

All stresses causing the acceleration

τij = −
1

ρ
p δij + ν∂jui − u′iu′j (27)
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Questions?

Thanks for your attention!
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