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Finite volume discretization

Gergely Kristóf

13-th September 2017

Discretization of the Navier-Stokes equation
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Curvilinear, stretched Unstructured, hybridsometimes, more 
complex meshes 
are necessary for 
efficient solution

It might be discretized with finite differencing schemes on an equidistant 
Cartesian mesh, however...

The generic conservation law
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U: volume intensity of an arbitrary conserved 
quantity.

 /U

The conserved quantity per init mass of
fluid:

vfC


  Df


Convective and conductive fluxes:

Discrete solution

Fluxes are evaluated on the element faces. 
Finite volume method is conservative: discretization errors do not produce or 
destroy conserved physical properties. Conservation equations are exactly 
fulfilled on the computational domain.
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Approximation of surface integrals and 
volume integrals

PP,
V
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Interpolation of the fluxes must be at least as 
accurate as the integration scheme.

Alternative surface integration schemes:
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Volume integrals

Surface integrals

Finite volume approximation of spatial 
derivatives

The generic transport equation can be also expressed in differential form:
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Spatial derivatives are always in div(...), grad(...) or div(grad(...)) forms. 

We only need to look for the discrete approximations of these operators.

P

Cell centroid.
Field variables are 
stored in this points.

Coordinates of face vector 
separating the ℓth neighbor 
are represented by dAℓ,i , 
in which i=1,2,3 (for x,y,z). Face centroid. 

We need to 
interpolate here 
from the centroids. 

From the volume integral of the divergence operator we can obtain the cell 
average of the divergence term.
The Gauss-Ostrogradskij theorem for an arbitrary vector quantity:

The discrete representation of the divergence term is defined as a volume average 
over element P:

uℓ,i are Descartes coordinates of vector u being interpolated to face centroids.
This expression is a linear combination of u values stored in P and in neighboring 
cells. 

Approximation of the divergence operator
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A direct consequence of the Gauss-Ostrogradskij theorem:

The i-th component of the approximate gradient can be evaluated 
according to the following expression:
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Approximation of the gradient operator

The same composition can be applied for discrete operators:

Approximation of the Laplacian operator

For most field variables - excepting for the pressure field – the face normal 
component of the gradient vector can be calculated on a more simple way:
from  values stored in the centers of the adjacent cells.
In this case the discrete form of the Laplacian operator can be calculated 
as a linear combination of P and the neighboring  values:

In which aP and aℓ are constant values, depending only on the mesh parameters.
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Steady flow of a constant density fluid with heat conduction 
in a constant cross-section pipe
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Energy equation:

Application in 1D
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A AApplied for one cell:
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integral of fluxes:
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Discretization
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Application of the CDS scheme
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Face temperatures (Te and Tw) are obtained by a linear interpolation:

EEWWPP TATATA 
The resultant linear equation for TP:

Since AP=AW+AE, the linear equation for AP can be regarded as a weighted 
average of the neighboring T values. TP cannot be an extreme value, if the „A” 
values are positive.
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We can solve this system by Gauss elimination.
The matrix of the linear system is a tridiagonal matrix which requires only
2n operations in the case of n cells. 
(This special case of the Gauss elimination is called the Thomas algorithm). 

Solution of the system of linear 
algebraic equations

For 4 cells:

Unfortunately, such an efficient direct solution is not possible in 2D and 3D
(iterative methods must be applied).

TA()
TB()

TC() TD()
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Analytical solution

Depending on context, the same equation can be called the 
- convection-diffusion equation, 
- advection–diffusion equation, 
- drift–diffusion equation, 
- Smoluchowski equation, or 
- (generic) scalar transport equation.

Implementation in Excel macro

1. Similar solution is obtained with
different input parameters.

2. The error reduces with N2.
(Second order accuracy.)

3. Sometimes the solution 
oscillates. 
What is the condition for the 
onset of instabilities?
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Transportivity
By physical means:
TE must have a decreasing affect on TP for an increasing value of Pe, 
because the heat conduction is overridden by the adverse convective flux.
Does the numerical scheme behaves so?
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The cell Peclet number is the ratio of convective and conductive heat fluxes.
In the case of Pex>>2 the value of AE can be a very large negative value. 
This is not sensible from physical point of view. 
This case is also numerically unstable. 
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Upwind Differencing Scheme (UDS)

for u>=0:

for u<0:

PeWw TT,TT 

EePw TT,TT 
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Further numerical experiments...

Accuracy reduced to 1-st order.
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It is like if the heat conductivity grew.
Let’s substitute the numerical approximation of
the temperature gradient: x
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Artificial diffusion
An important source of numerical errors. It came from the inaccurate interpolation:
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we neglect these

The positivity of the “A”s must be ensured.
We need to apply unwinding only if the absolute value of Pex is too high.:
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Hybrid Differencing Scheme (HDS)

It is of second order accuracy for
conduction dominated problems. 
(For small Pex cases.)

by Spalding (1972)
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Second Order Upwinding (SOU)

We can interpolate
T within the simulation
cell by using its 
gradient:

Wall fluxes than can 
be than evaluated like:

Firstly:

Secondly:
gradients are limited on such a way that they shouldn’t
introduce oscillations. For details on the gradient limiters
please refer: C Hirsch, Numerical computation of internal
and external flows.

Gradients are calculated in 2 steps:

TP

The numerical diffusion in practice

UDS

SOU

10x10 20x20 40x40 80x80Mesh size:

2D heat transport with zero heat conductivity (=0).

1.0 0.5 0.0


