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Numerical approximations of 
derivatives and integrals

Gergely Kristóf

6-th September 2017

Lecture Laboratory
Wednesday 10-12 Thursday 10-12

K. g.f. 87 CFD lab
1 szept.6 Differencing schemes ICEM tutorial (1) - 2D elbow
2 szept.13 Finite volume method ICEM tutorial (2) - 3D elbow
3 szept.20 Uni. Sport Day ICEM tutorial (3) - pipe-blade
4 szept.27 Pressure-velocity coupling Pump model
5 okt.4 Solution of linear systems Jet fan model
6 okt.11 Compressible flows Individual assignment (1)
7 okt.18 Multiphase flows Individual assignment (2)
8 okt.25 Multiphase flows Individual assignment (3)
9 nov.1 National event Group assignment (1)

10 nov.8 1st midterm Group assignment (2)
11 nov.15 Turbulence modelling Scientific student competition
12 nov.22 Turbulence modelling Group assignment (3)
13 nov.29 Turbulence modelling Multiphase flow tutorial
14 dec.6 2nd midterm Presentation

dec.14 Retake

Finite difference method 
error and convergence

The approximation error 
uj+1-uj+1,A reduces with reduced 
interval size.

Some schemes are better than 
the other... xj xj+1/2 xj+1 x

u

uj

u(x)

uj+1

uj+1,A (case A)

uj+1,B (case B)

uj+1,C
(case C)

We shall calculate the change 
of exact solution u(x) by 
integrating the derivative 
on section xj+1-xj=x :
A) from the initial derivative,
B) from the terminal derivative,
C) from midpoint derivative.
The values of the approximate 
solution are: uj+1,A , uj+1,B , , uj+1,C
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Taylor polynomial of the exact solution 
from point j to point j+1:

From the Taylor polynomial we can 
express a differencing scheme of 
first order accuracy:

This is an integration scheme of first
order accuracy. 

Forward Differencing Scheme (FDS)

 jjj x,uf'u 

  xx,ufuu jjjj 1

we can integral step by step, by assuming:

When the differential equation is given in 
the explicit form:

Note that, the error term is one 
degree of magnitude higher.
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Another first order scheme:

When F is evaluated in j+1, we 
may end up with a more 
complicated expression for uj+1. 
This kind of discretization is 
called implicit:

Backward Differencing Scheme (BDS), 
implicit discretisation method
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from the backward Euler scheme we get:

Now, we assume the differential equation 
is given in the following form:
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unknown

Different behavior…

x
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u

analitical solutions

Physical processes lead to a temporal equilibrium in many cases. 

Explicit Euler method:

Implicit Euler method:
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Central Differencing Scheme (CDS)

Extensively used in CFD for spatial discretization.
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An implicit differencing scheme with second 
order accuracy

Can be used for discretizing the boundary layer equation.
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An explicit integrating scheme with second order accuracy
It is often used for integrating the Navier-Stoket equations.

Adams-Basforth scheme
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A 2 step 2nd order explicit Runge-Kutta 
type scheme
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1st step:

2nd step: Use CDS scheme around point j:

Using the Euler method we can calculate approximate values: 

Can be used for calculating compressible flows (eg. Lax-Wendroff method).
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Further important properties of numerical 
methods

1. Consistency The discretization of a PDE should become exact as 
the mesh size tends to zero (truncation error should vanish)

2. Stability Numerical errors which are generated during the solution 
of discretized equations should not be magnified

3. Convergence The numerical solution should approach the exact 
solution of the PDE and converge to it as the mesh size tends to 
zero

4. Conservation Underlying conservation laws should be respected 
at the discrete level (artificial sources/sinks are to be avoided)

5. Boundedness Physical quantities like densities, temperatures, 
concentrations etc. should remain nonnegative and free of 
spurious wiggles

These properties must be verified for each (component of the) 
numerical scheme.


