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Abstract 
 

The performance and safety of current open wheeler race cars depend heavily on the 

effectiveness of the aerodynamic package. The front wing and front wheels make a 

significant contribution and therefore must be well understood. Previous investigations 

have focused on the aerodynamic characteristics of either an isolated downforce 

generating wing in ground effect or a rotating wheel in isolation. Investigations that have 

considering both bodies working in unison conflictingly claim that the addition of a wheel 

downstream of a wing can aid or hinder the performance of the wing, and the wheel’s 

aerodynamic performance has not been reported. In order to obtain a more thorough 

understanding of the interaction of a wing and wheel, experimental results were used to 

conduct an extensive validation of a computational model, after an equally rigorous 

verification study had been conducted. A number of investigations were then conducted of 

a wing and wheel working in unison as well as each in isolation using the computational 

model. 

 

The combined wing and wheel investigation demonstrated that three main interactions can 

occur, depending on the selection of wing span, angle of attack and height used, while the 

wheel width and track were found to be less sensitive parameters. The three interacting 

states differ in the path that the main and secondary wing vortices take around the wheel 

and the subsequent variation in the combined wake structure. In general, the wing in the 

presence of the wheel reduced the wing’s ability to generate downforce by up to 45%. This 

is due to the high pressure regions generated forward of the wheel, which reduce the 

suction that can be achieved by the bottom surface. This was also found to alleviate the 

adverse pressure gradients experienced by the wing, and also reduce the drag by up to 

70%. For this reason, the downforce loss phenomenon was observed to occur at a height 

0.08c to 0.32c lower in comparison to the same wing in isolation, dependant on the wing 

span. Wheel lift and drag values were also observed to reduce in the presence of a wing 

by up to 65% and 38% respectively. The upwash and vortices generated by the wing were 

found to assist in reducing the separation from the contact patch and increasing the 

separation from the upper wheel tread; a phenomenon also observed during an isolated 

wheel investigation which was found to reduce the wheel’s lift and drag. As a result, it was 

shown that the combined wing and wheel downforce and drag optima differed by up to 

75% and 25% respectively to those which would be estimated if the two bodies were 
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investigated individually and the results summed. This highlights the importance of 

investigating these two bodies in unison. 
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AOA wing angle of attack 

c wing chord 

CD drag coefficient 

CDA drag coefficient not normalised with a reference area (m2) 

CL lift coefficient 

CLA lift coefficient not normalised with a reference area (m2) 

Cp static pressure coefficient 

CS side force coefficient 

CSA side force coefficient not normalised with a reference area (m2) 

d wheel diameter 

dp diameter of seeding particles 

dP seeding particle diameter 

fc critical frequency for which particle follows oscillations in flow 

fcoarse result obtained with the coarse mesh that the grid convergence index will be 

calculated for 

FD drag force experienced by a particle of seeding 

fErr doppler frequency error 

ffine result obtained with the fine mesh that the grid convergence index will be 

calculated in comparison to 

FL lift force experienced by a particle of seeding 

FS factor of safety for used for the calculation of the grid convergence index 

h height of wing measured from the point closest to the ground 

hgrid grid characteristic length 

hcoarse grid characteristic length of the coarse grid that the grid convergence index 
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be calculated in comparison to 

hLDA constant dependant on confidence level of LDA measurements 

href reference height for calculation of turbulence length scale 

I turbulence intensity 

k kinetic energy 

l turbulent length scale 

lR ratio between aperture of a Guassian beam and the beam waist 

N number of samples 

p factor describing the order of convergence used for the calculation of the grid 

convergence index 

p' fluctuating pressure component 

P  mean pressure component 

r ratio of coarse to fine grid characteristic lengths for the calculation of the grid 

convergence index 

S wing span (measured from center to tip) 

s particle of seeding slip velocity 

T wheel track 

ti transit time of the i'th particle crossing the measurement volume 

u
ρ

 velocity magnitude 

u', v', w' fluctuating velocity component 

WVU ,,  mean velocity component 

u,v,w velocities in the x,y,z directions respectively 

u1, u2, u3 velocity measured by the green blue and violet LDA channels respectively 

uF fluid seeding is traveling in velocity 

ui velocity of the i'th particle crossing the measurement volume 

∞u  freestream velocities 

urms, vrms, wrms rms velocities in the x,y,z directions respectively 

ut friction velocity 

vF fluid seeding is traveling in velocity 

vP particle of seeding velocity 

vS particle of seeding slip velocity 

W wheel width 

X  mean value of variable that the error will be calculated for 
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x,y,z orthogonal directions 

xD beam waist 

xIFS distance of inlet boundary from wheel center 

xOFS distance of outlet boundary from wheel center 

y+ y plus value 

yFS distance of side boundary from symmetry plane 

yp distance from the boundary to the center of the adjacent control volume used 

to calculate the y+ value 

zD length of measurement volume 

zFS distance of top boundary from ground 
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α angle of 2D LDA probe 

β angle of 1D LDA probe 

ε turbulent dissipation rate 

ε percentage variation of coarse and fine variable for the calculation of the grid 

convergence index 

Φ variable for which the error is required to be calculated 

φ angle about a circumference of the wheel parallel to the ground measured 

from the central, upstream point 

η non dimensionalised span measured from wing tip (0) to wing center (1) 

ηi non-uniform weighting factor for correcting velocity bias 

λ volumetric deformation 

λLDA wavelength of laser beam 

μ dynamic viscosity 

μF fluid seeding is traveling in viscosity 

μt turbulent viscosity 

ν kinematic viscosity 

θ angle around the central circumference of a wheel measured from the most 

upstream point 

θLDA beam separation angle 

ρ density of fluid 

ρP seeding particle density 
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τ shear stress acting on a volume of fluid 

τo time required to make slip velocity zero 

ω specific dissipation rate 

ωc critical frequency for which slip can be tolerated  

ζ equation dependant on the variable that measurement error will be 

calculated for 
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CCD Charged Couple Device 

DNS Direct Numerical Simulation 

F1 Formula One 

GCI Grid Convergence Index 

LDA Laser Doppler Anemometer 

LES Large Eddy Simulation 

PIV Particle Image Velocimetry 

RANS Reynolds Averaging Navier Stokes 

RNG Renormalization Group theory 

RSM Reynolds Stress Modeling 

SIMPLE Semi-Implicit Method for Pressure Linked Equations 

SIMPLEC SIMPLE Consistent 

SST Shear Stress Transport 
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