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What is modelling?

» Experimental modelling
» Theoretical modelling

— Physical model layer

— Mathematical model layer
» Numerical model

Model layers

Requirements:

Let it describe all
significant processes

1 Let it run successfully

______ E *processor time
"7~~~ «storage capacity :
I
- 1 estability ]
generic code > custom code ! wconvergence '
(customized) L (generalizable) B gence . .

Relating model layers properly

i~ physical mathematical ="}  numeric

e good models
e wrong models

Validation/verification
is unavoidable in the
modelling process!
*mistakes can be proven,
ereliability can only be
substantiated by
empirical probability

Creating a physical model

What are the significant processes?
* Include all the significant processes

» Get rid of non-significant ones
[The dimensionless numbers help us with these!|
+ Classify the system based on the above

J




2016-09-21

Basic notions and terminology

Ordinary phases:
preserve volume % preserves shape
Condensed phases @

Fluid phases
expands w déform

There also exist extraordinary
phases, like plastics and other
complex materials

The property of fluidity serves in
the definition of fluids

Properties and physical models of

solids
Mass point model
«  Extension (density, volume),
rotation, inertial momentum

. EIastjc deformations (small, reversib_le The simplest
and linear), deformation and stress fields™ | continuum model

« Inelastic deformations (large, irreversible

Properties of solids:
¢ Mass (inertia),
position, translation

and nonlinear), dislocations, failure etc.
Modelled features: complex mode

1. Mechanics
« Statics: mechanical equilibrium is necessary

« Dynamics: governed by deviation from
mechanical equilibrium

2. Thermodynamics of solids

Properties and physical models of

Key properties of fluids: ﬂ UIdS
« Large, irreversible deformations
« Density, pressure, viscosity, thermal conductivity, etc.

Only continuum models are appropriate!
Features to be modelled:
1. Statics

» Hydrostatics: definition of fluid (pressure and density can be
inhomogeneous)

» Thermostatics: thermal equilibrium (homogenous state)
2. Dynamics

1. Mechanical dynamics: motion governed by deviation from
equilibrium of forces
2. Thermodynamics of fluids:

Deviation from global thermodynamic equilibrium often governs
processes multiphase, multi-component systems

Local thermodynamic equilibrium is (almost always) maintained

Mathematical model of
simple fluids

* Inside the fluid:
— Transport equations
Mass, momentum and energy balances
5PDE’s for p(t,F), u(t,¥) and T(t,F)< # i;;ﬂa\%éggz?
— Constitutive equations
Algebraic equations for o(p.T). n(p.T), k(p.T), ...
* Boundary conditions | Secondary (indirect) field variables |
On explicitly or implicitly specified surfaces
+ Initial conditions

J

Expressing local thermodynamic equilibrium in
fluid dynamics:
the use of intensive and extensive state

Thermodynamical representations

Representation (independent variables) | TD potential

entropy and volume (s,1/p) internal energy

variables Incomplete

without class

+ Integral forms: intensive and extensive (X) L
+ Differential forms (PDE’s):
— fixed control volume (F=const):
intensive and densities of the extensive ones (x=X/V)
— advected fluid parcel (m=const):

intensive and specific values of the extensive ones
(x=X/m)

temperature and volume (T,1/p) free energy
entropy and pressure (s,p) enthalpy
temperature and pressure (T,p) free enthalpy

« All of these are equivalent:
can be transformed to each other by appropriate formulzse

» Use the one which is most practicable:
e.g., (s,p) in acoustics: s = const = p(s,p) — p(p)-

We prefer (T,p)

Note U
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Some models of simple fluids

Stoksean fluid

" p(p), u=const compressible

In both of these, the heat transport problem can (OI’ barotropic) fluid
be solved separately (one-way coupling):

fluid dynamical heat transport
equations equation (1 PDE)
- p(p. 1), u(p,T), k(p,T), ...

Mutually coupled thermo-hydraulic equations:

fluid dynamical heat transport
equations equation

|

* p=const, |L=const

!

general simple fluid

|

Phase transitions

Non-Newtonian behaviour etc. -
models for complex fluids

in case of a single compound 0

< Evaporation, incl.
— Boiling
— Cavitation

« Condensation, incl.
— Liquefaction
— Solidification

All phase transitions involve
latent heat deposition or
release v

J

Typical phase diagrams of a pure material:
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In equili{;rium 1, 2 or 3 phases can exist together

|Complete mechanical and thermal equilibrium | U

Material properties
in multi-phase, single component
systems

One needs explicit constitutional equations
for each phase. (] )
For each phase (p) one needs to know:
— the thermodynamic potential — «”(p.T)
— the thermal equation of state  p”(p,T)

— the viscosity 7"(p,T)
— the heat capacity (p.T)
— the thermal conductivity. K(p,T)

J

Conditions of local phase equilibrium

in a contact point 0
in case of a pure material
* 2 phases: * 3 phases:
TH=T@=T TH=T@ =T@=T 0
p(7)=p(2)=_'p p(7)=p(2)=p(3) =p

HO(T,p)= (T, p) = u(T,p)
Locus of solution: Locus of solution:
aline Ty(p) or py(T), a point (T, p,), the triple
the saturation point.
temperature or

pressure (e.g.
‘boiling point”).

HY(T,p)= @ (T,p)

Multiple components 0

* Almost all systems have more than 1 (chemical)
components

« Phases are typically multi-component mixtures
Concentration(s): measure(s) of composition
There are lot of practical concentrations in use, e.g.

— Mass fraction (we prefer this!
¢ =mjm, cz=r£12/em‘?.4. c,{=rr)tk/m,... Se=>m/m=1
k k

— Volume fraction (used in CFD and if volume is conserved upon mixing!)
a=VV, aa=WJV,... =V, a,=>V[V=1

) . ) Lok o
— Mole fraction (used in case of chemical reactions and diffusion)
i :”1/"5 Yy :”z/”a e W :nA/”a ZYk :z’zA/”:l

k k

J
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Multiple components

Concentration fields appear as new primary
field variables in the mathematical model
One of them (usually that of the solvent) is
redundant, not used.

c(t,r)fork=2,... K

Notations to be used
(or at least attempted)

» Phase index (upper):

—(p)or
—(s), (®), (9), (v), (f) for solid, liquid, gas , vapour, fluid

+ Component index (lower): &
» Coordinate index (lower): i, j or ¢

Examples: | (s) .(» . (»)

P Cp T, U

 Partial differentiation:
(8,5 8;(0, =0,

Note U

Material properties in
multi-component mixtures

* One needs constitutional equations for each
phase

* These algebraic equations depend also on the
concentrations

For each phase (p) one needs to know:
— the thermodynamic potential ~ ")(p,7,¢,c!")....)
— the thermal equation of state  p)(p,7.c, ‘P’,...)
— the heat capacity p, 1, e0,..)

— the viscosity
— the thermal conductivity
— the diffusion coefficients

J

’l(”)(P’T,c:”',cé”),..4)
k(l’)(p'Tyc‘U')’Cg/’)“ ) )
DE(p. 7.7, el,...)

(1]

Conditions of local phase equilibrium
in a contact point
in case of multiple components
« Suppose N phases and K components:

« Thermal and mechanical equilibrium on the interfaces:
TN=T = = TN=T

p=p@ = = pMN=p 2N — only 2 independent unknowns
Mass balance for each component among all phases

TP,OM H, T,p,%AyCz encd))= Tps«f’() )

(Z”(T,p,y’f%,cgl ,“.,c,(1 ): iz)(T,p,(;p)J,cgz) ,,,,, c%)):“.*ﬂ(”(T », w (”,“.,cﬁg"))

,U,\ Tp/ (1) . 1 Tpc}”')J ,,,,, ) y(lgr)(T.p,z,‘ ),cg’v),“.,cg\i\'))

K(N-1) independent equations for 2+N(K-1) independent unknowns

Phase equilibrium
in a multi-component mixture

Gibbs’ Rule of Phases, in equilibrium:

[#phases = N <#components +2 = K +2|

| TD limit on the # of phases |

If there is no (global) TD equilibrium:
additional phases may also exist

—in transient metastable state(s) or
—in spatially separated, distant points

Miscibility

The number of phases in a given system is also influenced
by the miscibility of the components:
* Gases always mix —
Typically there is at most 1 contiguous gas phase
« Liquids maybe miscible or immiscible —
Liquids may separate into more than 1 phases
(e.g. polar water + apolar oil)
1. Surface tension (gas-liquid interface)
2. |Interfacial tension (liquid-liquid interface)
(In general: Interfacial tension on fluid-liquid interfaces)
« Solids typically remain granular
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Topology of phases and interfaces

A phase may be
» Contiguous

(more than 1 contiguous
phases can coexist)

* Dispersed:
— solid particles,

Interfaces are
» 2D interface surfaces
separating 2 phases
— gas-liquid: surface
— liquid-liquid: interface
— solid-fluid: wall
droplets O_r bubbles 1D contact lines separating 3
— of small size phases and 3 interfaces (at least)
— usually surrounded . (D contact points with

by a contiguous (at least) 4 phases, 6 interfaces
phase and 4 contact lines

* Compound =

Topological limit on the # of phases
(always local)

Special Features to Be Modelled

* Multiple components —
— chemical reactions
— molecular diffusion of constituents
* Multiple phases — inter-phase processes
— momentum transport,
— mass transport and
— energy (heat) transfer
across interfaces and within each phase.
(Local deviation from total TD equilibrium is typical)

Are components = chemical
species?

Not always: Example: ) )
. . components in an air-
* Major reagents in water two phase system

chemical reactions has to
be modelled separately,

« but similar materials can
be grouped together and I T 1
treated as a single C= I ) ( )
component

— The grouping can be

refined in the course of the
modelling

DIEICI ENENEY

Multi-component transport

We set up transport equations for single-phase multi-component fluids

Multi-component
advection and diffusion
model

conceptual and
mathematical
analogy

necessary

Modelling
chemical reactions

Multi-phase
transport equations

J

Multi-component transport
Outline

Balance equations

Mass balance — equation of continuity
Component balance

Advection

Molecular diffusion

Chemical reactions

Mass balance for a control volume

Mass inside: m(t):.ﬂ..[ plt,¥)av

Outflow rate: ;) - ﬁ j(e.¥)-dA <:|

Mass production rate:  Q(#) =0

Mass is a conserved quantity (in 3D): Thisis a
no production (sources) and decay (sinks) inside

Integral form: i{ﬂ =-J()+0()

conservation law
t

tot v [

Differential form: 0,0 + 6(,0 ﬁ) =0 « F) = ]/P

Mass balance equation
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Component mass balance

For each component:

Iﬂpk LF dv<:|n|:>

Mass production rate: Q, (t) 0

Mass inside: m,

Outflow rate: J

If component masses are also conserved, then These are also
no production (sources) and decay (sinks) inside

d conservation laws
& L=—J(+0,(0)

t ¢ o/ g

Mass balance equations!

J Differential form: 0,0, + V(p, 1,)=0 « i (¢,F _JA/pA

The mass transport equations
/ d,p+V(pi)=0
Z ﬂ ;pk=p’ ;jk=;pkﬁk=i

Vk: atpk+§(pkﬁk):0§ pi=ap, k=P =P,
g U, =u+(,-u)=u+w,

0, (“kp)+ 6(ckp ﬁ) = 76(pkwk): 7611;11‘/; = jdiﬁk VA

\ advection| | diffusion
(A W+p 6 C + “VQ]— —V]Mk

Vk: D, =0,c, +Ve, =_;V.Imffk z.lduu zpkwk =0

O  u

Notations to be used
(or at least attempted)

» Material derivative of a specific quantity:

%’; Z +@-V)f > =00 +E-9)f

Note U

Two ways of
resolving redundancy

1. Pick exactly K mass transport equations and

choose the @s follows:

V(pu)=0
k=1,...K: 6+ 6@“):_§j«mrk (@

o
i k=2,..K: —(1/p)6jdm.k
2. If needed, calculate the remaining h
variable fields|from the algebraic relatigns:
oe0)=3p0.%) ale®)=1-3{e)e%)

e)(t.%) :@(z,i)(z,i) T pe.%) @Zz)@t,x)

Typically, For a binary mixture:
this is the & (t,%) = c(t,X)
> solvent a(t.%)=1-c(1.%)

Differential forms in U
balance equations

By =[[ 1.

Conservation of F: F(; m

» equations for the
density (¢) ﬁ
— general 0,0+V-j, =0
Uif j. =t

— only convective flux 8,0+ V(ii-9)=0
U if m is conserved

D=0, +@-v)r=0
4

These forms describe
passive advection of F

» equation for the
specific value (1)

Passive advection

» Computational advantage:
The component transport

« The concentrations of equations uncouple from
the fluid particles do not the basic fluid dynamical
change with time: problem and can be solved

De =8c + (ﬁ ) ?)c -~ separately and a posteriori

. 'Il'hkezor;lrionent k + The solution requires

densities vary in fixed — Lagrangian particle orbits
rtion to th I — Initial conditions (hyperbolic
gropc?t 1on 1o the overa equations)
ensity:
3,p +V(pi)=0
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O (i, =0

Turbulent mixing

Simple diffusion models

+ No diffusion — pure advection

0, +6(PAﬁ):O
Dy, =0

» Equimolecular counter-diffusion

jdﬂk _pDvckor constant D and p — {O,p,\ + V(o) = DVip,
D,c, = DV’¢,

« Fick’s 1st Law ¢ ¢

for each solute if ¢, <<1(k=2,...,K)

T __ e (p.ii)= D V>
Jaiee » =—PD Ve, constant D, andp_){a/Pk +V(pii)=D,V’p,

D,c, = DV,

X .- — Fick’s 2nd Law:
but note that 2 junc =0 d,¢, =DV,
k=1

oo =DV + by TN+ 5 1)

Further diffusion models

Thermodiffusion and/or barodiffusion
Occur(s) at

* high concentrations

* high T and/or p gradients
For a binary mixture:

Analogous cross effects
appear in the heat
conduction equation

D -k, :coefficient of thermodiffusion
D -k, :coefficient of barodiffusion

Further diffusion models

M, K,-K, =
Jm[rk pZM d/;t ;k‘Vyk

l#k

Nonlinear diffusion model

Cross effect among species’ _
diffusion K = adj(K)

Valid also at kaZA*'%‘ZLifk#@

« high concentrations D, M, F D,

+ more than 2 components K =0

* low T and/or p gradients

(For a binary mixture it falls
back to Fick’s law.)

M .
=——-¢,: mole fraction
M,

M = ZykM mean molar mass

D, : bmary diffusion coefficien t
Dk,(T,n,MA,,M,): Dy,

Further notes on diffusion
modelling

* For internal consistency of the whole model
— D has to be changed in accordance to the turbulence
model (‘turbulent diffusivity’)
— Diffusive heat transfer has to be included in the heat
transport equation
* In the presence of multiple phases, the
formulation can be straightforwardly generalised
by introducing the phasic quantities

(P) () 3 02Ny T(p) (P)
o>, o> P 0 2 07 dame = i D > D

The advection—diffusion equations

local rate advective diffusive
of change flux flux

a(p-¢, +V(“Pck) -V-j
{ since m is conserved

D,ckzarck+(ﬁ-§)ck :—%6 Ji

The component masses are conserved but not passive
quantities
J

The advection—diffusion—reaction
equations

local rate advective diffusive
of change flux flux

0,(p ¢ )+ V(u P ) =-V. ]A + (mass productlon rate density)

{ since m is conserved 0

reactive source terms |

D¢, =0, + (ﬁ . ﬁ)c,‘ = —i§-i + (local specific production rate)
P

The component masses are not conserved quantities

J
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Reaction modelling
O U TL I N E Incomplete

1. Reaction stoichiometry P> notes
2. Reaction energetics >
3. Reaction kinetics >
Effects in the model equations:

* reactive source terms in the advection—
diffusion—reaction equations =~ P>

* reaction heat source terms in the energy
(=heat conduction) equation

J

Chemical reactions

» Chemical reactions are stochastic
processes in which a molecular
configuration of atoms transitions into

another configuration
A Afigure showing initial and final configurations
and explaining the relevant energy changes
Incomplete is missing from here
without class
notes Energetics

forward reaction: AE>0 energy released — exothermic
reverse reaction: AE<0 energy consumed — endothermic

J

A binary reaction

A template reaction

Stoichiometry Reagents Stoichiometry Reagents
forward reaction and reaction forward reaction and reaction
products products
reactant — products . reactants — product .
k | species k | species
= + 4+ - + =
product < reactants 2 H+ products < reactant 2 0,
3 OH-~ 3 H,
Vk: |vk| =1
J J
Reaction stoichiometry
Stoichiometric constants Reagents Stoichiometric constants Reagents
» forward reaction: and reaction » forward reaction: and reaction
+2H,0-10,-2H,=0 products +2:H,0-10,-2'H,=0 products
M=2, =l v =2 k | species n=+2, v,=-1, v =2 k | species
-2:H,0+1-0,+2-H,=0 L H,0 -2:H,0+1:0,+2-H,=0 L H,0
V=2, v,=+1, v;=+2 2 0, vi="2, v,=+1, v;=+2 2 O,
« forreactants: v, <0, 3 H, « for reactants: v, <0, 3 H,

* ror reaction products: v, >0
The number of

 for catalysts: v, =0 ka # 0/ | molecules is not
k

J conserved

* ror reaction products: v, >0 -
« for catalysts: v,=0 BLIE i _total
mass is

J ;Mk V=0 conserved
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Reactive source terms A

Incomplete
without class
notes

One reaction process: Several reactions:

A _ g Vk—— v 5
= v},é Zk @

reaction fate

reaction rate vector

Possible units:

. dm, _
. mol/s,—’—)Vk a Mo z"k[lfn 0,(0)

+ (mol/m3)/s—|vk: %: M, 'ka[,] &

. (mol/kg)/s_\
vk Ly, Z"m &

SWI8} 821N0S dBAl3oEal

dr
Jy <«

An alternative formulation:
summation over reaction pairs instead of
individual reactions

d =

Vk: Mk =M, Z"k[] (5[] [) Q"(t
.dp _

B LU W (&> -&)

dc PN
vk Ly, .;vk[rr(im —&<)

forward and reverse
reaction rates

Reactive heat source terms in
the energy transport equation

Energy released (or consumed) in the
course of the reactions appear in the
system as reaction heat.

The corresponding source terms in the
energy balance (aka. heat transport)

equation are:

or, equivalently
energy released energy released
in reaction [r] in forward reaction [r]

v <«

Reaction kinetics

For a wide range of reactions the reaction

rates look like this A
&y o DT[(C: ) } . exr)[— @)

R-T

Incomplete
without class
notes

| probability of the transition

at the prevailing temperature

probability of the
simultaneous presence
of all reactant molecules

Notational system for local
extensive quantities

 For integral description
(in control volumes):
— extensive quantity: F
+ For differential description (local values):
—density: p=F/V=p-f
— specific value f=F/m
— molar value f=F/n
— molecular value F*=F/N U




