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What is modelling? 

• Experimental modelling 

• Theoretical modelling 

– Physical model layer 

– Mathematical model layer 

• Numerical model 



Model layers 

general laws 

(relationships) 

physical model physical model 

mathematical mathematical 

model 

numeric numeric 

implementation 

the specific 

system 

Let it describe all 

significant processes 

Let it be solvable 

Let it run successfully 

•processor time 

•storage capacity 

•stability 

•convergence 

Requirements: 

generic code 

(customized) 
? 

custom code 

(generalizable) 



Relating model layers properly 

physical mathematical numeric 

good models 

wrong models 

self consistence 

validity 

Validation/verification 

is unavoidable in the 

modelling process!  

•mistakes can be proven, 

•reliability can only be 

substantiated by 

empirical probability 



Creating a physical model 

What are the significant processes? 

• Include all 

• Get rid of non-significant ones 

The dimensionless numbers help us with these! 

• Classify the system based on the above 



Basic notions and terminology 

Ordinary phases: 

– Solid 

– Liquid 

– Gaseous 

preserves shape 

Fluid phases 

deform 

preserve volume 

Condensed phases 

   expands  

There also exist extraordinary 

phases, like plastics and other 

complex materials 

The property of fluidity serves in 

the definition of fluids 



Properties of solids: 

• Mass (inertia), 
position, translation 

• Extension (density, volume), 
rotation, inertial momentum 

• Elastic deformations (small, reversible 
and linear), deformation and stress fields 

• Inelastic deformations (large, irreversible 
and nonlinear), dislocations, failure etc. 

Modelled features: 

1. Mechanics 
• Statics: mechanical equilibrium is necessary 

• Dynamics: governed by deviation from 
mechanical equilibrium 

2. Thermodynamics of solids 

Properties and physical models of 

solids 
Mass point model 

Rigid body model 

The simplest 

continuum model 

Even more  

complex models 



Key properties of fluids: 

• Large, irreversible deformations 

• Density, pressure, viscosity, thermal conductivity, etc.  
 

 

Features to be modelled: 

1. Statics 
• Hydrostatics: definition of fluid (pressure and density can be 

inhomogeneous) 

• Thermostatics: thermal equilibrium (homogenous state) 

2. Dynamics 
1. Mechanical dynamics: motion governed by deviation from 

equilibrium of forces 

2. Thermodynamics of fluids: 
• Deviation from global thermodynamic equilibrium often governs 

processes multiphase, multi-component systems 

• Local thermodynamic equilibrium is (almost always) maintained 

Properties and physical models of 

fluids 

Only continuum models are appropriate! 



Mathematical model of 

simple fluids 

• Inside the fluid: 

– Transport equations 

Mass, momentum and energy balances 

5 PDE’s for 

– Constitutive equations 

Algebraic equations for 

• Boundary conditions 

On explicitly or implicitly specified surfaces 

• Initial conditions 
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Primary (direct) 

field variables 

Secondary (indirect) field variables 



Expressing local thermodynamic equilibrium in 
fluid dynamics: 
the use of intensive and extensive state 
variables 

• Integral forms: intensive and extensive (X) 

• Differential forms (PDE’s): 
– fixed control volume (V=const): 

intensive and densities of the extensive ones (x=X/V) 

– advected fluid parcel (m=const): 
intensive and specific values of the extensive ones 
(x=X/m) 

 

Incomplete 

without class 

notes 

! 



Note 

Thermodynamical representations 

• All of these are equivalent: 
can be transformed to each other by appropriate formulæ 

• Use the one which is most practicable: 
e.g., (s,p) in acoustics: s = const  ρ(s,p)  ρ(p). 
 

We prefer (T,p) 

Representation (independent variables) TD potential 

entropy and volume (s,1/ρ) internal energy 

temperature and volume (T,1/ρ) free energy 

entropy and pressure (s,p) enthalpy 

temperature and pressure (T,p) free enthalpy 



Some models of simple fluids 

•   
 

•   
 
 In both of these, the heat transport problem can 

be solved separately (one-way coupling): 

 

 

 

•   
Mutually coupled thermo-hydraulic equations: 

 

 

 

 

• Non-Newtonian behaviour etc. 

const,const  

),,(),,(),,( TpkTpTp 

const),p( 

Stoksean fluid 

compressible  

(or barotropic) fluid 

models for complex fluids 

general simple fluid 

fluid dynamical 

equations 

heat transport 

equation (1 PDE) 

fluid dynamical 

equations 

heat transport 

equation 



Phase transitions 
in case of a single compound 

• Evaporation, incl. 
– Boiling 

– Cavitation 

• Condensation, incl. 
– Liquefaction 

– Solidification 

• Sublimation 

• Freezing 

• Melting 

All phase transitions involve 
latent heat deposition or 
release 



Typical phase diagrams of a pure material: 

In equilibrium 1, 2 or 3 phases can exist together 

Complete mechanical and thermal equilibrium 
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Conditions of local phase equilibrium 

in a contact point 

in case of a pure material 
• 2 phases: 

T(1)=T(2)=:T 

p(1)=p(2)=:p 

μ(1)(T,p)= μ(2)(T,p) 

Locus of solution: 

a line Ts(p) or ps(T), 

the saturation 

temperature or 

pressure (e.g. 

‘boiling point´). 

• 3 phases: 

T(1)=T(2) =T(3)=:T 

p(1)=p(2)=p(3) =:p 

μ(1)(T,p)= μ(2)(T,p) = μ(3)(T,p) 

Locus of solution: 

a point (Tt,pt), the triple 

point. 



Multiple components 

• Almost all systems have more than 1 (chemical) 
components 

• Phases are typically multi-component mixtures 

Concentration(s): measure(s) of composition 
There are lot of practical concentrations in use, e.g. 

– Mass fraction (we prefer this!) 

 

– Volume fraction (good only if volume is conserved upon mixing!) 

 

– Mole fraction (used in case of chemical reactions and diffusion) 
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Multiple components 

Concentration fields appear as new primary 

field variables in the equation: 
One of them (usually that of the solvent) is 

redundant, not used. 
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Note 

Notations to be used 

(or at least attempted) 

• Phase index (upper):  

– (p) or 

– (s), (ℓ), (g), (v), (f) for solid, liquid, gas , vapour, fluid 

• Component index (lower): k 

• Coordinate index (lower): i, j or t 

Examples: 

 

• Partial differentiation: 
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Material properties in  

multi-component mixtures 

• One needs constitutional equations for each 

phase 

• These algebraic equations depend also on the 

concentrations 

For each phase (p) one needs to know: 

– the equation of state 

– the heat capacity 

– the viscosity 

– the thermal conductivity 

– the diffusion coefficients 
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• Suppose N phases and K components: 

• Thermal and mechanical equilibrium on the interfaces: 

T(1)=T(2) = …= T(N)=:T 

p(1)=p(2) = …= p(N)=:p  2N → only 2 independent unknowns 

• Mass balance for each component among all phases: 

 

 

 

 

 

 

K(N-1) independent equations for 2+N(K-1) independent unknowns 

Conditions of local phase equilibrium 

in a contact point 

in case of multiple components 

                          
                          

                          N
K

NNN

KKKKK

N
K

NNN

KK

N
K

NNN

KK

c,,c,c,p,Tc,,c,c,p,Tc,,c,c,p,T

c,,c,c,p,Tc,,c,c,p,Tc,,c,c,p,T

c,,c,c,p,Tc,,c,c,p,Tc,,c,c,p,T









21
22

2
2

1

211
2

1
1

1

212

22
2

2
1

2

2

11
2

1
1

1

2

211

22
2

2
1

2

1

11
2

1
1

1

1















Phase equilibrium 

in a multi-component mixture 

Gibbs’ Rule of Phases, in equilibrium: 

 

 

 

If there is no (global) TD equilibrium: 

additional phases may also exist  

– in transient metastable state or  

– spatially separated, in distant points 

 

22components phases  K#N#

TD limit on the # of phases 



Miscibility 

The number of phases in a given system is also influenced 
by the miscibility of the components: 

• Gases always mix → 
Typically there is at most 1 contiguous gas phase 

• Liquids maybe miscible or immiscible → 
Liquids may separate into more than 1 phases 

(e.g. polar water + apolar oil) 

1. Surface tension (gas-liquid interface) 

2. Interfacial tension (liquid-liquid interface) 

(In general: Interfacial tension on fluid-liquid interfaces) 

• Solids typically remain granular 



Topology of phases and interfaces 

A phase may be 

• Contiguous 
(more than 1 contiguous 

phases can coexist) 

• Dispersed: 

– solid particles, 
droplets or bubbles 

– of small size 

– usually surrounded 
by a contiguous 
phase 

• Compound 
 

Interfaces are 

• 2D interface surfaces 
separating 2 phases 

– gas-liquid: surface 

– liquid-liquid: interface 

– solid-fluid: wall 

• 1D contact lines separating 3 

phases and 3 interfaces (at least) 

• 0D contact points with 4 

phases, 6 interfaces and 4 contact 

lines (at least) 

Topological limit on the # of phases 

(always local) 



Special Features to Be Modelled 

• Multiple components → 

– chemical reactions 

– molecular diffusion of constituents 

• Multiple phases → inter-phase processes 

– momentum transport, 

– mass transport and 

– energy (heat) transfer 

across interfaces and within each phase. 

(Local deviation from total TD equilibrium is typical) 

 



Are components = chemical 

species? 

Not always: 

• Major reagents in 

chemical reactions has to 

be modelled separately, 

• but similar materials can 

be grouped together and 

treated as a single 

component 

– The grouping can be 

refined in the course of the 

modelling 

Example: 
components in an air-
water two phase system 

wet air 

dry air water vapour 

N2 O2 CO2 

water 

H2O 
dissolved 

gases 

H2O N2 O2 CO2 H+ OH- 



Multi-component 

advection and diffusion 

model 

Modelling 

chemical reactions 

Multi-phase 

transport equations 

conceptual and 

mathematical 

analogy 

necessary 

Multi-component transport 

We set up transport equations for single-phase multi-component fluids 



Multi-component transport 
Outline 

• Balance equations 

• Mass balance — equation of continuity 

• Component balance 

• Advection 

• Molecular diffusion 

• Chemical reactions 

 



Mass balance for a control volume 
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Eulerian (fixed) control volume in 3D 
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Mass production rate: 
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Mass is a conserved quantity (in 3D): 
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Integral form: 

 

Mass balance equation 

 

Differential form: 

By definition: 

This is a 

conservation law 



Component mass balance 

uu


k

Mass inside:    

   

0)(

,

,











tQ

ttJ

dVttm

k

kk

kk

Adrj

r






Outflow rate: 

Mass production rate: 

  kkk t jru


 :,

If component masses are  also conserved, then 

no production (sources) and decay (sinks) inside 

  0

)()(





kkkt

kk
k tQtJ

dt

dm

u






Integral form: 

 

Mass balance equations 

 

Differential form: 

By definition: 

These are also 

conservation laws 

For each component: 



The mass transport equations 
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Note 

Notations to be used 

(or at least attempted) 

• Material derivative of a specific quantity: 

 

 

 

   fffDf
t

f

Dt

Df
tt 







uu ::

 



Two ways of 

resolving redundancy 

1. Pick exactly K mass transport equations and 

choose the K primary variables as follows: 

 

 

2. If needed, calculate the remaining secondary 

variable fields from the algebraic relations: 
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For a binary mixture: 
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Differential forms in  

balance equations 

Conservation of F: 

• equations for the 

density (φ) 

– general 

 

– only convective flux 

 

• equation for the 

specific value ( f ) 
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passive advection of F 
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Passive advection 

• The concentrations of 

the fluid particles do not 

change with time: 

 

• The component 

densities vary in fixed 

proportion to the overall 

density: 

 

• Computational advantage:  

The component transport 

equations uncouple from 

the basic fluid dynamical 

problem and can be solved 

separately and a posteriori 

• The solution requires  

– Lagrangian particle orbits 

– Initial conditions (hyperbolic 

equations) 
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Simple diffusion models 

• No diffusion → pure advection 

 

• Equimolecular counter-diffusion 

 

• Fick’s 1st Law 

for each solute if  

 

 

but note that 
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Further diffusion models 

Thermodiffusion and/or barodiffusion 

Occur(s) at 

• high concentrations 

• high T and/or p gradients 

For a binary mixture: 

 
coefficient of thermodiffusion 

coefficient of barodiffusion 
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Further diffusion models 

Nonlinear diffusion model 

Cross effect among species’ 

diffusion 

Valid also at 

• high concentrations 

• more than 2 components 

• low T and/or p gradients 

(For a binary mixture it falls 

back to Fick’s law.) 
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Further notes on diffusion 

modelling 

• For internal consistency of the whole model 

– D has to be changed in accordance to the turbulence 

model (`turbulent diffusivity’) 

– Diffusive heat transfer has to be included in the heat 

transport equation 

• In the presence of multiple phases, the 

formulation can be straightforwardly generalised 

by introducing the phasic quantities 
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The advection–diffusion equations 
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The advection–diffusion–reaction 

equations 
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Reaction modelling 

OUTLINE 

1. Reaction stoichiometry 

2. Reaction energetics 

3. Reaction kinetics 

Effects in the model equations: 

• reactive source terms in the advection–

diffusion–reaction equations 

• reaction heat source terms in the energy 

(=heat conduction) equation 
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A template reaction 

Stoichiomerty 

forward reaction 

reactants → product 

2 H2 + O2 = 2 H2O 

products ← reactant 

reverse reaction 

 

 

Reagents 

and reaction 

products 

k species 

1 H2O 

2 O2 

3 H2 

Energetics 

forward reaction:   ΔE>0 energy released    → exothermic   

reverse reaction: −ΔE>0 energy consumed → endothermic 



Notational system for local 

extensive quantities 

• For integral description 

 (in control volumes): 

– extensive quantity: F 

• For differential description (local values): 

– density: φ=F/V=ρ∙f 

– specific value f=F/m 

– molar value f=F/n 

– molecular value F*=F/N 



Modelling multiple phases in fluids 

 



Phases 

Mathematical description 

using characteristic functions: 
 

 

They resemble concentrations since one of them is 
redundant: 

 

 

but they are discreet and not continuous 
(either 0 or 1, but not in between) 
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Phasic volume fractions 

More practical description by averaging: 
• Time averaged local volume fraction: 

 

 
• Volume averaged 

volume fraction 

• Cross-sectional averaged 

 volume fraction 

• Chordal/vertical averaged 

 volume fraction 
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Phasic volume fractions 2 

• Averaging in time and 
space can be combined 
using appropriate 
averaging windows 

• Such averages are 
directly related to 
measurement processes 

• Running averaging can 
produce smooth functions 

• Volume fractions 
resemble much more to 
concentrations: 

Measurement methods: 

• Optical fibre probe 

• gamma-ray absorption 

• X-ray absorption 

• neutron scattering 

• optical image processing 

• etc. 
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Volume fractions  

in gas—liquid two-phase systems  

• If the volume fraction of the gas phase is 

used, it is often called void fraction: 

 

 

• If the volume fraction of the liquid phase is 

used, it is often called liquid holdup: 
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Interfaces 

• Mathematical description of interfaces 
– normal, tangent, curvature 

– implicit description 

– parametric description 

– interface motion 

• Transport through interfaces 
Continuity and jump conditions: 

– mass balance 

– force balance 

– heat balance 
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Interfaces and their motion 

• Description of interface surfaces: 

– parametrically 

– by implicit function 

– (the explicit description is the common case of 

the previous two) 

• Moving phase interface: 

(only!) the normal velocity component 

makes sense 

New 

primary(?) 

field 

variables 
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Description of an interface by an 

implicit function 
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Equation of motion of an interface 

given by implicit function 
• Equation of interface 

• Path of the point that 
remains on the interface 
(but not necessarily a 
fluid particle) 

• Differentiate 

• For any such point the 
normal velocity 
component must be the 
same 

• Propagation speed and 
velocity of the interface 


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Parametric description of 

interface motion 

• Functional form of the surface: 

• Curvilinear coordinates and 

• path of a point that remains on 

the interface  
(not necessarily a fluid particle) 

• Differentiate: 

 

• Take the normal velocity 

component to get 

• the propagation speed and 

velocity of the interface: 
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Mass balance through an interface 

Steps of the derivation: 

1. Describe in a reference frame that 

moves with the interface (e.g. keep the 

position of the origin on the interface) 

2. Describe velocities inside the phases in 

the moving frame 

3. Match mass fluxes 
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Mass flux of component k in the co-moving reference 
frame: 

 

 

Case of conservation of component mass: 
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Diffusion through an interface 

• on a pure interface 
(no surface phase, no 
surfactants) 

• without surface 
reactions 
(not a reaction front) 

The component flux 
through the interface: 
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Examples 

Impermeability condition 

Surface reaction 
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Momentum balance through an 

interface 

Effects due to 

• surface tension (S) 

• surface viscosity 

• surface 

compressibility 

• mass transfer 

 



Surface tension 

• The origin and interpretation of surface 

tension 
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Dynamical boundary conditions 

with surface/interfacial tension 

• Fluids in rest 

– normal component: 

• Moving fluids without 

interfacial mass 

transfer 

– normal component: 

– tangential components: 

The viscous stress tensor: 

Modifies the 

thermodynamic phase 

equilibrium conditions 



The heat conduction equation 
Transport equation in the bulk 

• Fourier’s formula 
– (thermodiffusion not included!) 

• Volumetric heat sources: 
– viscous dissipation 

– direct heating 

– heat released in chemical 
reactions 

Conditions on the interfaces 

• Thermal equilibrium 

• Heat flux: 
– continuity (simplest) 

– latent heat (phase transition of 
pure substance) 

Even more complex cases: 

– chemical component diffusion 

– chemical reactions on surface 

– direct heating of surface 
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Summary of boundary conditions 

on moving interfaces 

Physical balance equations imply conditions 

on the interface elements: 

• continuity conditions 

• jump conditions 

These are different  

• with and without mass transfer 

• in case of special interfacial properties 

(`active interfaces’) 


