

Department of Fluid Mechanics

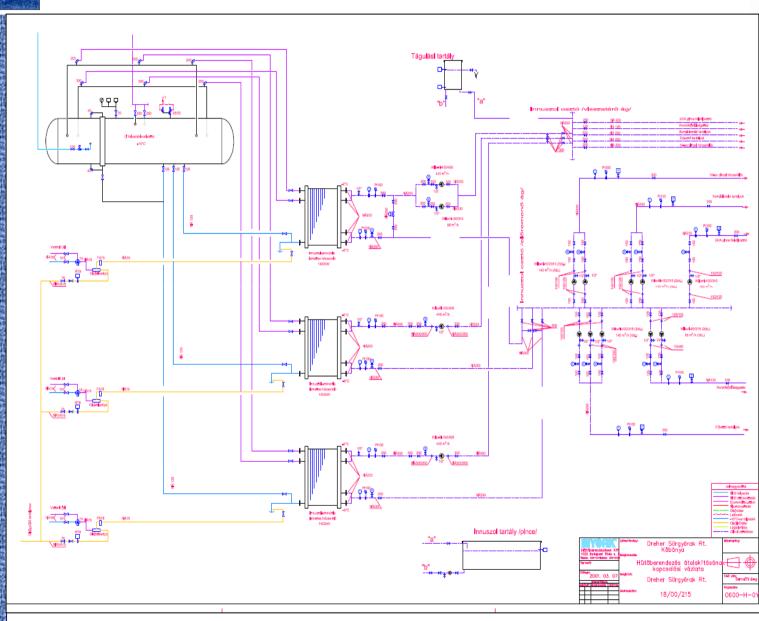
Budapest University of Technology and Economics (BME)

Cooling System

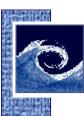
Project Summary

Tamás Benedek Balázs Berkó Gergely Háznagy

2012.05.18.



- Amount of consumed beer changes seasonally
- Seasonal change in the cooling demand
- For distributing the cooling fluid, a hydraulic distribution system was installed
- Primary circuit: 3 heat exchangers, 4 pumps
 - Can be controlled by switching on / off
- Secondary circuit : each branch has an own pump
 - Can be speed-controlled, by using frequency converters
- Consequence
 - Flow rate of cooling fluid on the primary side can be higher than necessary



The system

18 54 DREHER SÖRGYÁRAK

Project summary

Tasks set by the local supervisor

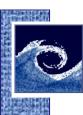
- Survey on the operational state: estimate the flow rate on the primary and secondary sides of the hydraulic distribution system
- Recommendations for a more economical pumping operation, for reduction of consumption of electric energy
- Feasibility study: the consumers are supplied directly from the primary side

Flow rates: principles

- Importance of knowledge on system hydraulics
 - Pipe friction, diameter, lengths, number of elbows, the pressure drop of heat exchanger, ...
- The characteristic curves of branches (loading curves) can be calculated as function of the flow rate:

$$H = H_{st} + C \cdot Q^{2}$$
$$C = \left(1 + \lambda \frac{l}{d} + \sum \xi\right) \frac{8}{d^{4} \pi^{2} g}$$
$$P = \frac{Q \cdot \rho \cdot g \cdot H}{\eta}$$

- The intersection between the loading curve of a branch and the characteristic curve of the related pump gives the operational point (the fluid is innusol)
- DETAILED FURTHER INVESTIGATION NEEDED


POSSIBILITIES:

- The primary side pump control
 - Valve control (throttling)
 - Inadequate due to losses
 - Bypass con trol
 - Frequency converter
 - Flow rate as a function of motor speed
 - Lower losses
 - Measur ement date are required for fitting to the system
 - Motor speed control by measuring temperature

DETAILED FURTHER INVESTIGATION NEEDED

Project summary

Direct supply from the primary side

- Eliminate the hydraulic distribution, directly supply the branches on the secondary side
 - Pumps are controlled by frequency converter
 - Continuous measurement is necessary for control purposes
 - Build new pipe into the system

DETAILED FURTHER INVESTIGATION NEEDED

SUMMARY

The first steps were done in the following topics:

Future improvement offered by the University (BME):

- Elaboration of a reliable, detailed hydraulic model
 - On-site survey \rightarrow data on system elements
 - Technical documentation \rightarrow data on system elements
 - Elaboration of a mathematical model for system hydraulics
 - Local non-invasive measurements (ultrasonic flow rate measurements), for validating and adjusting the model
- Using the model: recommendations for a more economical pumping operation, for reduction of electric energy consumption
 - Feasibility studies on various control solutions
 - Feasibility study: consumers supplied directly from the primary side
 - Economical calculations for the various solutions
 - Technical proposal(s) for modification

Thank you for your attention!