
Laser Doppler Anemometry
Introduction to principles and applications



Characteristics of LDA

• Invented by Yeh and Cummins in 1964

• Velocity measurements in Fluid Dynamics (gas, liquid)

• Up to 3 velocity components

• Non-intrusive measurements (optical technique)

• Absolute measurement technique (no calibration • Absolute measurement technique (no calibration 
required)

• Very high accuracy

• Very high spatial resolution due to small measurement 
volume

• Tracer particles are required



Applications of LDA

• Laminar and turbulent flows

• Investigations on aerodynamics

• Supersonic flows

• Turbines, automotive etc.

•• Liquid flows

• Surface velocity and vibration measurement

• Hot environments (Flames, Plasma etc.)

• Velocity of particles

• ...... etc, etc, etc.



LDA - Fringe Model 

• Focused Laser beams intersect and form the 
measurement volume

• Plane wave fronts: beam waist in the plane of intersection

• Interference in the plane of intersection

• Pattern of bright and dark stripes/planes • Pattern of bright and dark stripes/planes 
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LDA Fibre Optical System



60 mm and 85 mm FiberFlow probes



The small integrated 3D FiberFlow
probe



Measurement of air flow around a
helicopter rotor model in a wind tunnel

Photo courtesy of University of Bristol, UK



Measurement of water flow 
inside a pump model

Photo courtesy of Grundfos A/S, DK



Measurement of velocity profiles in a 
water pipe



Velocity profile, fully developed 
turbulent pipe flow



Measurement of flow field around a 
1:5 scale car model in a wind tunnel

Photo courtesy of Mercedes-Benz, Germany



Measurement of wake flow around a 
ship model in a towing tank 

Photo courtesy of Marin, the Netherlands



Measurement of air flow field around 
a ship model in a wind tunnel

Photo courtesy of University of Bristol, UK



Measurement of flow around a ship 
propeller in a cavitation tank



Comparison of EFD and CFD results



Hot-Wire Anemometry

• Purpose:  

to measure mean and fluctuating variables in fluid flows 
(velocity, temperature, etc.): mean velocity, turbulence 
characteristics – TURBULENCE STUDIES; 
IMPROVEMENT OF TURBULENCE MODELS



• Consider a thin wire mounted to supports and exposed to a 
velocity U.

When a current is passed through wire, heat is generated (I2Rw). 
In equilibrium, this must be balanced by heat loss (primarily 
convective) to the surroundings.

Principles of operation

• If velocity changes, 
convective heat 

Current I Sensor dimensions:
convective heat 
transfer coefficient 
will change, wire 
temperature will 
change and 
eventually reach a 
new equilibrium. Velocity U

Current I

Sensor (thin wire)

Sensor dimensions:
length ~1 mm
diameter ~5 micrometer

Wire supports 
(St.St. needles)



Governing equation

• Governing Equation:

E = thermal energy stored in wire

E = CwTw

Cw = heat capacity of wire

dE

dt
W H= −

Cw = heat capacity of wire

W = power generated by Joule heating

W = I2 Rw

recall Rw = Rw(Tw)

H = heat transferred to surroundings



Simplified static analysis I

• For equilibrium conditions the heat storage is zero:

and the Joule heating W equals the convective heat transfer H

•

dE

dt
O W H==== ∴∴∴∴ ====

• Assumptions

- Radiation losses small

- Conduction to wire supports small

- Tw uniform over length of sensor
- Velocity impinges normally on wire, and is uniform over its entire 

length, and also small compared to sonic speed.

- Fluid temperature and density constant



Simplified static analysis II

Static heat transfer:

W = H          I2Rw = hA(Tw -Ta)          I2Rw = Nukf/dA(Tw -Ta)

h = film coefficient of heat transfer
A = heat transfer area
d = wire diameter
kf = heat conductivity of fluid
Nu = dimensionless heat transfer coefficient

⇒ ⇒

Nu = dimensionless heat transfer coefficient

Forced convection regime, i.e. Re >Gr1/3 (0.02 in air) and Re<140 

Nu = A1 + B1 · Ren = A2+ B2 · U
n

I2Rw2 = E2 = (Tw -Ta)(A + B · Un) “King’s law”

The voltage drop is used as a measure of velocity ⇒⇒⇒⇒ data acquisition, processing

A, B, n: BY CALIBRATION

⇒



Constant Temperature Anemometer CTA

• Principle:

Sensor resistance 
is kept constant by 
servo amplifier

• Advantages:

- Easy to use- Easy to use
- High frequency 

response
- Low noise
- Accepted standard

• Disadvantages:

- More complex circuit



Probe types I

• Miniature Wire Probes

Platinum-plated tungsten, 
5 µµµµm diameter, 1.2 mm length

• Gold-Plated Probes

3 mm total wire length, 
1.25 mm active sensor 1.25 mm active sensor 
copper ends, gold-plated

Advantages:

- accurately defined sensing length
- reduced heat dissipation by the prongs
- more uniform temperature distribution 

along wire
- less probe interference to the flow field



Probe types II

• Film Probes

Thin metal film (nickel) deposited on quartz 
body. Thin quartz layer protects metal film 
against corrosion, wear, physical damage, 
electrical action

• Fiber-Film Probes• Fiber-Film Probes

“Hybrid” - film deposited on a thin 
wire-like quartz rod (fiber) “split fiber-film 
probes.”



Probe types III

• X-probes for 2D flows

2 sensors perpendicular to each other. 
Measures within ±45o.

• Split-fiber probes for 2D flows

2 film sensors opposite each other on a quartz 
cylinder. Measures within ±90o.cylinder. Measures within ±90o.

• Tri-axial probes for 3D flows

3 sensors in an orthogonal system. Measures 
within 70o cone.


